Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop diagnostic test for pathogens

20.03.2006


Rapid identification of pathogens responsible for disease outbreaks critical for containment and implementation of public health measures



Researchers at the Greene Infectious Disease Laboratory at Columbia University’s Mailman School of Public Health led by Thomas Briese, PhD, associate professor of Epidemiology, have developed a rapid, comprehensive diagnostic test for viral hemorrhagic fevers caused by the Ebola and Marburg viruses, as well as others. The new diagnostic tool is addressed in a paper published in the April 2006 issue of the Centers for Disease Control and Prevention’s (CDC) Emerging Infectious Diseases. (The paper can be found online at www.cdc.gov/ncidod/eid/vol12no04/05-1515.htm)

Increasing international travel, trafficking in wildlife, political instability, and terrorism have made emerging infectious diseases a global concern. Viral hemorrhagic fevers (VHF) are of specific concern because they are associated with high morbidity and mortality (up to 80% mortality rates), and the potential for rapid dissemination through human-to-human transmission. The term "viral hemorrhagic fever" characterizes a severe multisystem syndrome associated with fever, shock, and bleeding caused by infection with one of a number of viruses, such as Ebola or Marburg.


"Currently, there is no way to treat most of these outbreaks," stated W. Ian Lipkin, MD, director of the Jerome L. and Dawn Greene Infectious Disease Laboratory at the Mailman School, and professor of Epidemiology, Neurology and Pathology at Columbia University. He added, "The most important first step is diagnostic--rapid identification of the exact pathogen responsible for an outbreak of disease is critical for containment and the implementation of public health measures, especially in instances where the agents are encountered out of their natural geographic context."

While other tools exist for the detection of VHF agents, none offers the sensitivity and speed of this new diagnostic screen, which incorporates MassTag PCR technology--providing the ability to simultaneously consider multiple agents, thereby reducing the time needed for differential diagnosis. To address the need for highly sensitive diagnostics, researchers built on an established method known as polymerase chain reaction that allows amplification of genetic sequences and on a technology previously used for DNA sequencing and detection of genetic polymorphisms. Genetic probes for pathogens were coupled to markers known as mass codes. After amplification, incorporated mass codes were detected by mass spectroscopy allowing identification of the pathogen.

To facilitate rapid differential diagnosis of VHF agents, Briese and colleagues established the "Greene MassTag Panel VHF v1.0," which can screen simultaneously for Ebola Zaire, Ebola Sudan, Marburg, Lassa virus, Rift Valley fever, Crimean-Congo hemorrhagic fever, Hantaan, Seoul, yellow fever, and Kyasanur Forest disease viruses.

These results confirm earlier work in respiratory diseases indicating that MassTag PCR offers a rapid, sensitive, specific, and economic approach to differential diagnosis of infectious diseases. Small, low-cost, or mobile APCI-MS units extend the applicability of this technique beyond selected reference laboratories.

Stated Dr. Lipkin, "This work represents an unprecedented collaboration in the creation of diagnostics for the developing world. The contributors to this work represent laboratories devoted to strengthening global disease surveillance and outbreak response capabilities." A vital part of the commitment includes validation of innovative, new detection tools for diagnosis of emerging and high-risk pathogens, as well as distribution of assays and reagents in global laboratory networks. The working group consisted of representatives from the following institutions:

  • Jerome L. and Dawn Greene Infectious Disease Laboratory, Mailman School of Public Health, Columbia University, New York, USA
  • Special Pathogens Unit, National Institute for Communicable Diseases, Sandringham, South Africa
  • Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
  • United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, USA
  • Bernhard-Nocht--Institute of Tropical Medicine, Hamburg, Germany
  • Special Pathogens Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, USA
  • Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
  • NIH, NIAID, USA

Randee Sacks Levine | EurekAlert!
Further information:
http://www.columbia.edu
http://www.cdc.gov/ncidod/eid/vol12no04/05-1515.htm

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>