Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team identifies cause of memory loss

16.03.2006


Identification may lead to drug development targeted to dementia



A research team that included members from The Johns Hopkins University and the University of Minnesota Medical School has for the first time identified a substance in the brain that is proven to cause memory loss. This identification gives drug developers a target for creating drugs to treat memory loss in patients with dementia.

Karen H. Ashe of the University of Minnesota Medical School led the research team, which is publishing its results in the March 16 issue of Nature. The team included Michela Gallagher, Krieger-Eisenhower Professor and chair of the Department of Psychological and Brain Sciences at Johns Hopkins, and Ming T. Koh, a post-doctoral fellow.


"Now that we have found a protein complex that causes cognitive decline and loss of memory, we will be able to aim our investigations not only to learning how that substance is implicated in disease, but also toward prevention," Gallagher said.

More specifically, once the memory-robbing protein complex is better understood, drugs could be developed to stop Alzheimer’s disease in its tracks, the researchers say.

Currently about 4.5 million Americans live with Alzheimer’s disease, a number that is expected to rise to 14 million over the next two decades.

In the past, it was generally accepted that Alzheimer’s disease was caused by plaques and tangles, unnatural accumulations of two naturally occurring proteins in the brain: amyloid-beta, which builds into plaques between nerve cells in the brain; and tau, which forms the tangles inside nerve cells.

Ashe’s lab proved last year that the tangles are not the cause of memory loss; this latest research shows the plaques aren’t a major cause either.

People with Alzheimer’s disease exhibit memory impairment before they are formally diagnosed, or before nerve cells in their brains begin to die. Thus, it is often difficult to discern whether people are experiencing the normal memory impairment that comes with aging or if they are, in fact, in the early stages of Alzheimer’s disease.

The researchers hypothesized that there was a substance in the brain that causes memory decline that is present even before nerve cells begin to die. To test that hypothesis, the team used mice whose genetic makeup was manipulated to develop memory loss much in a way people develop subtle memory problems before the earliest stages of Alzheimer’s disease. Using mice that showed early signs of memory loss and had no plaques or nerve cell loss in the brain, they discovered a form of the amyloid-beta protein that is distinct from plaques. They extracted and purified this newly found protein complex and injected it into healthy rats. The rats suffered cognitive impairment, confirming that this protein has a detrimental effect on memory.

Researchers at the University of Southern California and the University of California, Irvine, also collaborated on the research.

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>