Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel method reveals how menthol discovery could point towards new or improved pain therapies

13.03.2006


This new understanding could lead to potential advances in pain therapy, the researchers said. Moreover, the scientists envision that their method may be potentially useful in studying the activation mechanism of other drugs and proteins.



"Because our ability to sense temperature is closely linked to our ability to sense pain, it is not surprising that the misregulation of temperature-activated ion channels can result in chronic pain syndromes," said Ardem Patapoutian, associate professor at Scripps Research and member of GNF, who directed the research. "In fact, some of these ion channels are considered targets to treat chronic inflammatory and neuropathic pain indications. Understanding how small molecules such as menthol affect the function of these proteins could be crucial in designing future drugs that can either activate or block them."

The study was released in an advanced online version by the journal Nature Neuroscience. It will be published in the journal’s April edition (Vol. 9, No. 4).


Utilizing a novel mutagenesis and high-throughput screening approach, the study assayed 14,000 TRPM8 mutants to find mutants that were not enhanced by menthol but were otherwise functioning normally. The scientists’ analysis pinpointed a potential interaction site for menthol, as well as a site that translates binding information to ion channel activity.

Ion channels are proteins found in the cell membrane that can form a tunnel or channel that allows specific ions to move across the membrane. When activated, the channel opens, allowing an influx of calcium ions into the axon, an electrical signal that alerts the neuron, which relays the message to the brain.

Research Associate Michael Bandell, the lead author of the study, noted, "It’s a well established method to mutate individual amino acid residues in an ion channel protein and examine the effect that these mutations have on the channel’s function. However, the laborious nature of these experiments limits the number of mutant ion channels that can be made and analyzed. Our new high-throughput screening methodology allowed us to analyze 14,000 mutants out of which we isolated five that specifically affected menthol activity. Our experiments yielded significant insights into the functional elements of TRPM8 ion channel protein that would have been difficult to obtain using other mutagenesis methods."

Because the methodology can be used to screen for activation or inhibition, Bandell added, it could prove to be useful as a general method to analyze the mechanism by which drugs can activate or inhibit ion channels or other receptors. Specifically, the new methodology could be used to identify amino acid residues in certain ion channel proteins and G-protein coupled receptors (proteins involved in stimulus-response pathways) that are involved in the interaction with small molecules that affect their function.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>