Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel method reveals how menthol discovery could point towards new or improved pain therapies


This new understanding could lead to potential advances in pain therapy, the researchers said. Moreover, the scientists envision that their method may be potentially useful in studying the activation mechanism of other drugs and proteins.

"Because our ability to sense temperature is closely linked to our ability to sense pain, it is not surprising that the misregulation of temperature-activated ion channels can result in chronic pain syndromes," said Ardem Patapoutian, associate professor at Scripps Research and member of GNF, who directed the research. "In fact, some of these ion channels are considered targets to treat chronic inflammatory and neuropathic pain indications. Understanding how small molecules such as menthol affect the function of these proteins could be crucial in designing future drugs that can either activate or block them."

The study was released in an advanced online version by the journal Nature Neuroscience. It will be published in the journal’s April edition (Vol. 9, No. 4).

Utilizing a novel mutagenesis and high-throughput screening approach, the study assayed 14,000 TRPM8 mutants to find mutants that were not enhanced by menthol but were otherwise functioning normally. The scientists’ analysis pinpointed a potential interaction site for menthol, as well as a site that translates binding information to ion channel activity.

Ion channels are proteins found in the cell membrane that can form a tunnel or channel that allows specific ions to move across the membrane. When activated, the channel opens, allowing an influx of calcium ions into the axon, an electrical signal that alerts the neuron, which relays the message to the brain.

Research Associate Michael Bandell, the lead author of the study, noted, "It’s a well established method to mutate individual amino acid residues in an ion channel protein and examine the effect that these mutations have on the channel’s function. However, the laborious nature of these experiments limits the number of mutant ion channels that can be made and analyzed. Our new high-throughput screening methodology allowed us to analyze 14,000 mutants out of which we isolated five that specifically affected menthol activity. Our experiments yielded significant insights into the functional elements of TRPM8 ion channel protein that would have been difficult to obtain using other mutagenesis methods."

Because the methodology can be used to screen for activation or inhibition, Bandell added, it could prove to be useful as a general method to analyze the mechanism by which drugs can activate or inhibit ion channels or other receptors. Specifically, the new methodology could be used to identify amino acid residues in certain ion channel proteins and G-protein coupled receptors (proteins involved in stimulus-response pathways) that are involved in the interaction with small molecules that affect their function.

Keith McKeown | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>