Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saliva Component May Predict Future Oral Bone Loss

13.03.2006


Researchers at the University at Buffalo have identified two components of saliva that may serve as the basis for novel tests to determine the risk for future loss of the bone that holds teeth in place.



By comparing dental X-rays of 100 patients with analyses of their saliva, the researchers found that higher-than-normal levels of a salivary protein called IL-1-beta were associated with increased bone loss.

The level of another protein, osteonectin, was inversely proportional to bone loss, suggesting this marker may serve as a measure of periodontal health.


Results of the research, a collaboration between the UB School of Dental Medicine and the UB School of Public Health and Health Professions, were presented today (March 10, 2006) at the annual meeting of the International Association of Dental Research being held in Orlando, Fla.

"These results show that above-average levels of IL-1 beta in saliva may prove to help the dentist decide whether or not to treat the dental patient for periodontal disease," said lead researcher Frank Scannapieco, D.D.S., Ph.D., professor and chair of the Department of Oral Biology in the UB dental school.

"Currently there is no early warning test for bone-loss activity," Scannapieco added. "We can measure gum pocket depth, or the amount of bone remaining on an X-ray, but these methods only tell us how much damage already has been done. If these findings hold up in future longitudinal studies, the dental practitioner might use a test to decide what interventions are needed for the patient, and perhaps the frequency for recall visits.

"This biomarker test also could provide a quick and easy way to monitor patients over the long-term and to determine if a particular treatment is working," he said.

Periodontal bone loss is a serious oral-health condition that can cause teeth to loosen and fall out. The availability of a simple test would reduce the need to submit every patient to expensive, time-consuming and often uncomfortable X-rays and pocket-probing exams, which measure how much of the tooth-supporting bone already has been lost due to periodontal (gum) disease. Such a test also may help a dentist decide how often a patient needs tooth cleaning.

Previous studies had identified specific protein biomarkers of bone destruction in fluid collected from gum crevices in patients with active periodontal disease, but collecting enough of this fluid for analysis can be tedious and time consuming, whereas saliva is plentiful and easily collected.

The research team now is performing follow-up studies to determine the validity of their results.

Additional UB researchers on the team were Patricia Yen Bee Ng, Maureen Donley, D.D.S., Ernest Hausmann, D.M.D., Ph.D., Alan Hutson, Ph.D., Jean Wactowski-Wende, Ph.D., and Paul Bronson. Edward Rossomando, Ph.D., from the University of Connecticut, also contributed to the study.

The research was supported by a grant from the National Institute of Dental and Craniofacial Research.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>