Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use PET scans to monitor lung inflammation noninvasively

10.03.2006


A noninvasive approach for assessing lung inflammation should accelerate efforts to develop drugs for inflammatory lung conditions like cystic fibrosis and pneumonia, scientists at Washington University School of Medicine in St. Louis report.


In this PET image, the arrow shows inflammation of the lungs.



Researchers have used positron emission tomography (PET) scans to monitor artificially induced inflammation in the lungs of healthy volunteers. The new imaging process may help doctors monitor the conditions of patients with inflammatory lung diseases and should make it easier to test potential anti-inflammatory drugs in trials.

"Until now, when we wanted to assess whether a new drug decreased lung inflammation, the options for specifically measuring active inflammation were not pleasant," says lead author Delphine Chen, M.D., chief resident in nuclear medicine at the medical school’s Mallinckrodt Institute of Radiology. "We could perform a bronchoscopy and gather samples directly from the breathing passages, or we could have patients inhale a saline solution and cough it back up."


To make it possible to detect lung inflammation with PET, Chen and her colleagues employed an imaging technique commonly used to diagnose cancer and monitor its treatment. Scientists reported the results in a paper published online by The Journal of Applied Physiology.

Senior author Daniel P. Schuster, M.D., professor of medicine and of radiology, hopes the new imaging process will make it possible to give new drugs trial runs.

"Full-scale clinical trials are costly in terms of both time and dollars spent, and right now it’s very difficult to find intermediate steps that allow us to build confidence in a drug’s effectiveness before taking that plunge," Schuster says.

With the new PET procedure, Schuster says, researchers developing anti-inflammatory drugs can test the drugs’ effects in less expensive trials involving smaller groups of healthy volunteers and patients.

"If the drug passes those tests, then you can say, okay, let’s see in a full-scale trial if the drug actually has an impact on some important patient-centered outcome like mortality or disease progression," he says.

To create areas of limited lung inflammation in healthy volunteers, researchers used a technique originally developed by scientists at the National Institutes of Health. It involves the injection, via bronchoscope, of a small amount of endotoxin into a lung segment.

"Endotoxin is a purified bacterial substance that triggers inflammation," Schuster says. "The technique we used keeps that inflammation compartmentalized to a small region in the lung, ensuring that the inflammation doesn’t become systemic."

Another research group previously had shown that this artificial inflammation could be used to test potential drugs, but they followed the effects of the drugs via a second insertion of the bronchoscope into the volunteers’ tracheas.

Chen and her colleagues instead injected volunteers with fluorodeoxyglucose (FDG), a form of sugar readily detectable by PET, and continuously monitored the lungs for 60 minutes to see how much FDG appeared there.

Scientists already have completed a trial to test the new imaging procedure’s ability to detect inflammation in cystic fibrosis patients that will be published soon in The American Journal of Respiratory and Critical Care Medicine.

Michael Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>