Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use PET scans to monitor lung inflammation noninvasively

10.03.2006


A noninvasive approach for assessing lung inflammation should accelerate efforts to develop drugs for inflammatory lung conditions like cystic fibrosis and pneumonia, scientists at Washington University School of Medicine in St. Louis report.


In this PET image, the arrow shows inflammation of the lungs.



Researchers have used positron emission tomography (PET) scans to monitor artificially induced inflammation in the lungs of healthy volunteers. The new imaging process may help doctors monitor the conditions of patients with inflammatory lung diseases and should make it easier to test potential anti-inflammatory drugs in trials.

"Until now, when we wanted to assess whether a new drug decreased lung inflammation, the options for specifically measuring active inflammation were not pleasant," says lead author Delphine Chen, M.D., chief resident in nuclear medicine at the medical school’s Mallinckrodt Institute of Radiology. "We could perform a bronchoscopy and gather samples directly from the breathing passages, or we could have patients inhale a saline solution and cough it back up."


To make it possible to detect lung inflammation with PET, Chen and her colleagues employed an imaging technique commonly used to diagnose cancer and monitor its treatment. Scientists reported the results in a paper published online by The Journal of Applied Physiology.

Senior author Daniel P. Schuster, M.D., professor of medicine and of radiology, hopes the new imaging process will make it possible to give new drugs trial runs.

"Full-scale clinical trials are costly in terms of both time and dollars spent, and right now it’s very difficult to find intermediate steps that allow us to build confidence in a drug’s effectiveness before taking that plunge," Schuster says.

With the new PET procedure, Schuster says, researchers developing anti-inflammatory drugs can test the drugs’ effects in less expensive trials involving smaller groups of healthy volunteers and patients.

"If the drug passes those tests, then you can say, okay, let’s see in a full-scale trial if the drug actually has an impact on some important patient-centered outcome like mortality or disease progression," he says.

To create areas of limited lung inflammation in healthy volunteers, researchers used a technique originally developed by scientists at the National Institutes of Health. It involves the injection, via bronchoscope, of a small amount of endotoxin into a lung segment.

"Endotoxin is a purified bacterial substance that triggers inflammation," Schuster says. "The technique we used keeps that inflammation compartmentalized to a small region in the lung, ensuring that the inflammation doesn’t become systemic."

Another research group previously had shown that this artificial inflammation could be used to test potential drugs, but they followed the effects of the drugs via a second insertion of the bronchoscope into the volunteers’ tracheas.

Chen and her colleagues instead injected volunteers with fluorodeoxyglucose (FDG), a form of sugar readily detectable by PET, and continuously monitored the lungs for 60 minutes to see how much FDG appeared there.

Scientists already have completed a trial to test the new imaging procedure’s ability to detect inflammation in cystic fibrosis patients that will be published soon in The American Journal of Respiratory and Critical Care Medicine.

Michael Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>