Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

There’s more than meets the eye in judging the size of an object

10.03.2006


Neuroscientists from the University of Washington and the University of Minnesota have found that the first area in the cortex of the human brain that receives information from the eyes processes the perceived size, rather than the actual size, of an object.



"Our eyes only tell us part of what we need to be able to see. The other part is done by the brain, taking the input from the eyes and making guesses or inferences about what’s out there in the enviro You can’t always trust your eyes. nment. Usually these inferences are very accurate, but sometimes they lead us astray in the form of visual illusions," said Scott Murray, a UW assistant psychology professor and lead author of a study published in the current issue of Nature Neuroscience.

Murray and his Minnesota colleagues, Huseyin Boyaci and Daniel Kersten, used functional magnetic resonance imaging (fMRI) to see how the brain processes the size of objects when faced with an illusion such as the long-known moon illusion. For centuries it has been known that the moon, while rising, looks huge when it is near the horizon and smaller when high in the sky. It is in reality always the same size.


The researchers used a similar illusion, one that looked at the perceived difference in the size of an object at different distances. For their experiment they placed two identical spheres decorated with a checkerboard pattern in the front and rear of a receding brick hallway. In this kind of illusion, the more distant object appears to occupy a larger portion of the visual field.

Using fMRI, the researchers examined how the brains of five people with normal vision registered this difference in perceived size.

They found that the brain region known as the primary visual cortex, which is the first area in the cortex to receive input from the retina, showed a difference. Even though both spheres occupied exactly the same size on the retina, the rear sphere activated an approximately 20 percent larger area in the primary visual cortex than the front sphere. This difference closely matched a perceptual difference in size made by the subjects. Asked about the size of the two spheres, the people estimated the back sphere to be about 20 percent larger than the front one.

Murray said the simplicity of the results can belie its importance to anyone not involved in vision research.

"It almost seems like a first grader could have predicted the result. But virtually no vision or neuroscientist would have. The very dominant view is that the image of an object in the primary visual cortex is just a precise reflection of the image on the retina. I’m sure if one were to poll scientists, 99 percent of them would say the ’large’ moon and the ’small’ moon occupy the same amount of space in the primary visual cortex , assuming they haven’t read our paper!"

Murray said such illusions are more than simple curiosities because they can help identify how the visual system works.

"Our finding is important because it demonstrates that the process of making inferences about visual properties in our environment is occurring in the earliest stages of the visual system," he said. "Researchers have long believed that the visual system is organized hierarchically, with early visual areas such as the primary visual cortex simply registering the physical input from the eyes and ’higher’ visual areas attempting to put all the information together. This work challenges these theories of the organization of the visual system."

Joel Schwarz | EurekAlert!
Further information:
http://www.u.washington.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>