Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stowers Scientists Demonstrate Mechanism of Vertebral Formation

08.03.2006


Jacqueline Kim Dale, Ph.D., formerly a Senior Research Associate at the Stowers Institute for Medical Research, and Olivier Pourquié, Ph.D., Stowers Institute Investigator and an investigator with the Howard Hughes Medical Institute, have demonstrated that the long-studied family of transcription factors called Snail is expressed in a cyclic fashion during the formation of the vertebral precursors in the mouse and chick embryo.



The findings, which were published in the March 7 issue of Developmental Cell, indicate that the genes governing many cellular properties are downstream of the segmentation clock, the mechanism that controls the formation of the vertebral column.

“We are trying to understand how the periodic formation of the vertebral precursors in the embryo is controlled at the molecular level and how this process is integrated with the overall growth of the embryo,” said Dr. Pourquié.


“These findings are important because they implicate a novel family of transcription factors — the Snail proteins — in the process of embryonic segmentation,” said Robb Krumlauf, Ph.D., Scientific Director. “The findings provide a link between the morphogenesis of the tissue that generates the vertebrae and the periodic production of their precursors.”

The Snail factors which are known to control the transition of the epithelium to a mesenchyme state have been actively studied in cancer, where they are thought to play a role in controling tumor invasion. Understanding their function in embryonic development may provide insight into their dysfunction in cancer.

Additional contributing authors from the Stowers Institute include Pascale Malapert, Lab Manager II; Jérome Chal, Predoctoral Research Associate; Gonçalo Vilhais-Neto, Predoctoral Research Fellow; Miguel Maroto, Ph.D., formerly a Senior Research Associate; Teri Johnson, Managing Director of the Histology Facility; Sachintha Jayasinghe, Cytometry Laboratory Manager I; and Paul Trainor, Ph.D., Assistant Investigator.

About the Stowers Institute
Housed in a 600,000 square-foot state-of-the-art facility on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts basic research on fundamental processes of cellular life. Through its commitment to collaborative research and the use of cutting-edge technology, the Institute seeks more effective means of preventing and curing disease. The Institute was founded by Jim and Virginia Stowers, two cancer survivors who have created combined endowments of $2 billion in support of basic research of the highest quality.

For more information about the work of Dr. Pourquié’s team, visit www.stowers-institute.org/labs/PourquieLab.asp.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org/labs/PourquieLab.asp

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>