Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combined, Genes and Environment Affect Health More Than They Do Alone

06.03.2006


Both nature and nurture -- genetic makeup and the environment experienced through life -- combine to influence health and well-being, Duke University Medical Center researchers and their colleagues have determined in four new studies. The researchers showed that people’s genes play a key role in how they respond both biologically and psychologically to stress in their environment.



The researchers presented four studies that examine genetics and the environment on Thursday, March 2, 2006, as part of a symposium organized by Duke researchers at the American Psychosomatic Society annual meeting in Denver. The studies were conducted at Vrije Universiteit in Holland, the Medical College of Georgia and Duke. The studies were funded by the National Institute on Aging and the National Heart Lung and Blood Institute.

Two studies from Duke evaluated effects of a particular mutation in the gene that makes monoamine oxidase-A (MAOA-uVNTR), an enzyme responsible for breaking down serotonin as well as other neurotransmitters in the brain. One form of this mutation causes the gene to make more of the enzyme, while the other form results in less production of enzyme.


Neurotransmitters are chemical signals by which one neuron triggers a nerve impulse in a neighbor. Thus, neurotransmitters are fundamentally responsible for all brain function, and subtle changes in their level or activity can profoundly affect not only brain function but physiological function influenced by the brain.

"There has been considerable speculation that serotonergic nerves in the brain play an important role in glucose metabolism and obesity," said Richard Surwit, Ph.D., a medical psychologist at Duke who led one of the studies. "Drugs that block serotonergic receptors, such as olanzapine, can produce significant weight gain and diabetes, while drugs that stimulate serotonergic neurons, such as fenfluramine, can induce weight loss and improve metabolism."

The researchers’ studies of the effects of mutations in MAOA-uVNTR in 84 people showed that having the active or inactive form of the MAOA-uVNTR mutation appeared to determine how serotonin affected blood levels of glucose and insulin, as well as body mass index.

"It appears that people who carry a particular form of this gene may be more susceptible to developing obesity and diabetes and may be more responsive to therapies that impact on this enzyme," Surwit said.

In a separate study, a Duke research team examined effects of MAOA gene mutations in more than 300 study participants -- half of whom were primary caregivers for relatives or spouses with Alzheimer’s disease and half who were similar to the caregivers but had no caregiving responsibilities. Their data show a significant effect of the MAOA gene on the levels of stress hormones, particularly in men.

"It appears that men with the less active form of the MAOA gene who were subjected to the stress of caregiving, exhausted their ability to mount a stress hormone response during the day and evening hours," said Redford Williams, MD, director of the Behavioral Medicine Research Center at Duke and lead researcher on the study. "Their ability to maintain cortisol and adrenaline at normal levels during the day and evening was significantly lower than that of men with the more active form of the gene, and all the women with both forms of the gene.

"Ultimately, their body’s biological ability to cope with stress became impaired. This exhaustion of their ability to mount a hormonal stress response could place men with the less active form of the gene at higher risk of developing a broad range of health problems as their caregiving duties continue."

The symposium also included a study at the Medical College of Georgia evaluating several families of genes known to affect the stress response and whether the genes affect the risk of developing hypertension, or high blood pressure.

"It has been difficult to show effects of stress on the development of hypertension because it may be that only a subset of people who show a genetic susceptibility will develop high blood pressure after chronic exposure to stress," said Harold Snieder, Ph.D., lead investigator on the work being done at MCG. "Our research shows that effects of different candidate genes on the development of high blood pressure during adolescence depend on the environmental stressors that are present, the gender and the ethnicity, in a group of European American and African American youth that have been followed for 15 years."

In another study reported in the symposium, Eco De Geus, Ph.D., of the Vrije Univeriteit tested blood pressure and heart rate reactivity to acute mental tasks in a sample of 372 adolescent and middle-aged twins. De Geus found that genetic factors had a bigger effect on reactivity to stress than on resting blood pressure.

"Some genes may lie dormant when life is sweet and calm, but swing into action when we are stressed," he said.

The researchers at the symposium said they believe that using genetic markers to determine who is at greater risk of health problems due to both acute and chronic stress and other environmental factors – such as a high calorie diet -- could help identify who might benefit from interventions, such as training in more effective coping strategies, or from closer monitoring for obesity and diabetes onset, the researchers said.

Tracey Koepke | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>