Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nutritional friend or foe? Vitamin E sends mixed messages

06.03.2006


One of the most powerful antioxidants is truly a double-edged sword, say researchers at Ohio State University who studied how two forms of vitamin E act once they are inside animal cells.



In the past couple of decades, a slough of studies has looked at the benefits of vitamin E and other antioxidants. While a considerable amount of this research touts the advantages of consuming antioxidants, some of the studies have found that in certain cases, antioxidants, including vitamin E, may actually increase the potential for developing heart disease, cancer and a host of other health problems.

This study provides clues as to why this could happen, say Jiyan Ma, an assistant professor of molecular and cellular biochemistry, and his colleague David Cornwell, an emeritus professor of molecular and cellular biochemistry, both at Ohio State.


The two men led a study that compared how the two most common forms of vitamin E –– one is found primarily in plants like corn and soybeans, while the other is found in olive oil, almonds, sunflower seeds and mustard greens – affect the health of animal cells. The main difference between the two forms is a slight variation in their chemical structures.

In laboratory experiments, the kind of vitamin E found in corn and soybean oil, gamma-tocopherol, ultimately destroyed animal cells. But the other form of vitamin E, alpha-tocopherol, did not. (Tocopherol is the scientific name for vitamin E.)

“In the United States we tend to eat a diet rich in corn and soybean oil, so we consume much greater amounts of gamma-tocopherol than alpha-tocopherol,” Cornwell said. “But most of the vitamin E coursing through out veins is alpha-tocopherol – the body selects for this version. We want to know why that is, and whether the selection of the alpha-tocopherol confers an evolutionary benefit in animal cells.”

Cornwell and Ma explain their findings in this week’s Early Edition of the Proceedings of the National Academy of Sciences. They conducted the study with several colleagues from the departments of molecular and cellular biochemistry and chemistry at Ohio State.

The researchers conducted laboratory experiments on cells taken from the brains of mice. They treated some of the cells with metabolic end products, called quinones, of alpha- and gamma-tocopherol.

When the body breaks down vitamin E, these end products are what enter and act on our cells. However, Ma said that our bodies get rid of most gamma-tocopherol before it ever has a chance to reach its quinone stage.

Still, some nutritional supplement companies make and sell gamma-tocopherol supplements, promoting this version of vitamin E as a good antioxidant source. In theory, taking a vitamin supplement – a concentrated form of the vitamin - increases the amount of that substance in the body.

Using laboratory techniques that allowed them to detect the activity of the quinones inside the cells, the researchers found that the gamma-tocopherol quinone formed a compound which destroyed that cell. It did so by preventing proper protein folding in the cells, which causes a cellular response that is involved in a variety of human diseases, including diabetes and Parkinson’s disease.

However, the alpha-tocopherol quinone did not kill cells, nor did it interfere with protein folding. The researchers repeated their experiments on kidney cells cultured from monkeys and on skin cells cultured from mice and found similar results.

“We think that gamma-tocopherol may have this kind of damaging effect on nearly every type of cell in the body,” Ma said.

While the study doesn’t get into the possible effects on health, the researchers raise the point that there is still a great deal that isn’t known about how antioxidants act in the body. In order to get to that point, scientists must study how antioxidants and cells interact on their most fundamental levels.

This work was funded through grants from the National Science Foundation Environmental Molecular Science Institute and the Large Interdisciplinary Grants Program in the Office of Research at Ohio State.

Jiyan Ma | EurekAlert!
Further information:
http://www.osu.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>