Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nutritional friend or foe? Vitamin E sends mixed messages

06.03.2006


One of the most powerful antioxidants is truly a double-edged sword, say researchers at Ohio State University who studied how two forms of vitamin E act once they are inside animal cells.



In the past couple of decades, a slough of studies has looked at the benefits of vitamin E and other antioxidants. While a considerable amount of this research touts the advantages of consuming antioxidants, some of the studies have found that in certain cases, antioxidants, including vitamin E, may actually increase the potential for developing heart disease, cancer and a host of other health problems.

This study provides clues as to why this could happen, say Jiyan Ma, an assistant professor of molecular and cellular biochemistry, and his colleague David Cornwell, an emeritus professor of molecular and cellular biochemistry, both at Ohio State.


The two men led a study that compared how the two most common forms of vitamin E –– one is found primarily in plants like corn and soybeans, while the other is found in olive oil, almonds, sunflower seeds and mustard greens – affect the health of animal cells. The main difference between the two forms is a slight variation in their chemical structures.

In laboratory experiments, the kind of vitamin E found in corn and soybean oil, gamma-tocopherol, ultimately destroyed animal cells. But the other form of vitamin E, alpha-tocopherol, did not. (Tocopherol is the scientific name for vitamin E.)

“In the United States we tend to eat a diet rich in corn and soybean oil, so we consume much greater amounts of gamma-tocopherol than alpha-tocopherol,” Cornwell said. “But most of the vitamin E coursing through out veins is alpha-tocopherol – the body selects for this version. We want to know why that is, and whether the selection of the alpha-tocopherol confers an evolutionary benefit in animal cells.”

Cornwell and Ma explain their findings in this week’s Early Edition of the Proceedings of the National Academy of Sciences. They conducted the study with several colleagues from the departments of molecular and cellular biochemistry and chemistry at Ohio State.

The researchers conducted laboratory experiments on cells taken from the brains of mice. They treated some of the cells with metabolic end products, called quinones, of alpha- and gamma-tocopherol.

When the body breaks down vitamin E, these end products are what enter and act on our cells. However, Ma said that our bodies get rid of most gamma-tocopherol before it ever has a chance to reach its quinone stage.

Still, some nutritional supplement companies make and sell gamma-tocopherol supplements, promoting this version of vitamin E as a good antioxidant source. In theory, taking a vitamin supplement – a concentrated form of the vitamin - increases the amount of that substance in the body.

Using laboratory techniques that allowed them to detect the activity of the quinones inside the cells, the researchers found that the gamma-tocopherol quinone formed a compound which destroyed that cell. It did so by preventing proper protein folding in the cells, which causes a cellular response that is involved in a variety of human diseases, including diabetes and Parkinson’s disease.

However, the alpha-tocopherol quinone did not kill cells, nor did it interfere with protein folding. The researchers repeated their experiments on kidney cells cultured from monkeys and on skin cells cultured from mice and found similar results.

“We think that gamma-tocopherol may have this kind of damaging effect on nearly every type of cell in the body,” Ma said.

While the study doesn’t get into the possible effects on health, the researchers raise the point that there is still a great deal that isn’t known about how antioxidants act in the body. In order to get to that point, scientists must study how antioxidants and cells interact on their most fundamental levels.

This work was funded through grants from the National Science Foundation Environmental Molecular Science Institute and the Large Interdisciplinary Grants Program in the Office of Research at Ohio State.

Jiyan Ma | EurekAlert!
Further information:
http://www.osu.edu

More articles from Health and Medicine:

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>