Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Case School of Engineering professor applies virtual reality simulation to train world’s brain and heart surgeons

03.03.2006


Another research project of the professor’s could virtually eliminate need for heart/lung machines



Virtual reality simulation tools are already revolutionizing the way dentists are taught at Case Western Reserve University—and if M. Cenk Cavusoglu has his way, simulation technology at Case will also train the world’s brain and heart surgeons.

"Simulation is a popular training tool because it reduces the learning time and allows students to learn independently," said Cavusoglu, an assistant professor of electrical engineering and computer science at the Case School of Engineering.


Prior to joining Case in 2002, Cavusoglu helped to develop sophisticated laparoscopic and endoscopic tools in the Robotics and Intelligent Machine Lab at the University of California at Berkeley. Laparoscopy and endoscopy enable doctors to treat diseased organs and tissue and remove cysts and tumors through tiny rather than major incisions and often with local rather than general anesthesia. The challenge now, he says, is to expand these minimally invasive techniques to complex surgeries, and he intends to close that gap.

Cavusoglu and his colleagues at Case and other institutions nationwide are applying engineering, computer science and biomedical expertise to develop the simulation technology and open architecture software necessary for simulation technology. They also are experimenting with soft tissue models and "haptics" technology to replicate the appearance and functions of the heart and brain, and enable doctors to "feel" when they accomplish procedures correctly.

"Laparoscopy requires a different skill set than open surgery," Cavusoglu explains. "Surgeons typically view patients from the outside in. When a laparoscopic camera is inserted, they see patients from the inside out. Hand/eye coordination is difficult to master. Practice on a simulator would allow surgeons to perfect their technique with no risk to patients."

Another undertaking—Cavusoglu’s "robotic beating heart surgery" project—is also advancing surgical science. In a joint program with the University of California at Berkeley funded by the National Science Foundation, Cavusoglu and several Case doctoral students are building a prototype robot that will allow surgeons to routinely perform open surgery on a beating rather than a stopped heart, minimizing risk to the patient. Designed to stabilize and track the heart’s motion, the robot would virtually eliminate the need for heart/lung machines, currently used in approximately 80 percent of heart surgeries.

"Traditional coronary artery bypass graft (CABG) surgery has undesirable side effects that range from cognitive loss to increased hospital stays that are believed to be related to artificial heart pumps," Cavusoglu said. "In this project, we believe that if the heart were able to beat freely during surgery, these pumps would not be needed and it is possible that these side effects might be lessened."

About Case Western Reserve University

Case is among the nation’s leading research institutions. Founded in 1826 and shaped by the unique merger of the Case Institute of Technology and Western Reserve University, Case is distinguished by its strengths in education, research, service, and experiential learning. Located in Cleveland, Case offers nationally recognized programs in the Arts and Sciences, Dental Medicine, Engineering, Law, Management, Medicine, Nursing, and Social Work.

Laura Massie | EurekAlert!
Further information:
http://www.case.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>