Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT method reveals how radiation damages the body

01.03.2006


Researchers at MIT have devised a new method for examining how radiation damages normal tissue in the body. The knowledge may make it possible to reduce side effects for cancer patients or to develop treatments for radiation exposure.



About 50 percent of all cancer patients are treated with radiation therapy, either alone or in combination with some other type of treatment. Radiation can be very effective in killing tumor cells, but it also kills normal tissues nearby. In the gastrointestinal (GI) tract, this killing of normal cells can cause such side effects as nausea or diarrhea within days or weeks of treatment, and serious GI tissue damage can occur months or years later.

"The long-term effects that occur six months to a year or more after exposure aren’t reversible like the short-term ones, and they are a big unknown," said Associate Professor Jeffrey A. Coderre of MIT’s Department of Nuclear Science and Engineering. The damage is similar to scar tissue formation and can seriously affect tissue function in the GI tract.


"We’ve come up with a tool to selectively irradiate blood vessels to study how radiation damages normal tissue over both the short term and the long term," said Coderre, who is co-author of an article appearing online the week of Feb. 27 in the Proceedings of the National Academy of Sciences (PNAS). "This is the first time it has been possible to do this."

Conventional techniques using external radiation beams are not specific enough for this type of study. "We are selectively delivering a radiation dose to all of the cells that make up the microscopic blood vessels throughout the body," he said.

The method Coderre and his colleagues at MIT and UCLA came up with involves putting boron into a drug administered intravenously in mice, and then subjecting the animals to whole-body neutron radiation using the MIT research reactor. Individual boron atoms in the blood capture a neutron, become unstable, and immediately split in half, giving off two short-range radiations (an alpha particle and a lithium ion) in the process.

The boron is kept in the blood by trapping it inside a type of nanoparticle known as a liposome, which is only billionths of a meter in size. These particles are too big to move from the blood into normal tissues, so the short-range radiations from the boron-neutron reactions in the blood only reach the blood vessel walls and cannot damage the normal tissues outside the blood vessels.

By selectively irradiating the blood vessels, it is possible to see where the breakdown of tissue structure and function starts following radiation exposure. And that information could lead to more effective and less damaging treatments, Coderre said.

Coderre said the method can be applied to other tissues. It also has implications for the development of radioprotectors or treatments for radiation exposure. But perhaps the greatest potential is in understanding the sequence of steps that begin at the time of irradiation but take years to create damage.

For example, there will be approximately 240,000 new cases of prostate cancer diagnosed in the United States in 2006. Depending on the dose of radiation delivered to their tumor, anywhere from 20 percent to 40 percent of those patients could show some degree of late damage.

The lead author on the PNAS paper is Bradley W. Schuller, a graduate student in Coderre’s lab. Peter J. Binns and Kent J. Riley, both research scientists in MIT’s Nuclear Reactor Lab, also are authors on the paper, as are Ling Ma and Professor M. Frederick Hawthorne, both at UCLA.

This research was funded by the U.S. Department of Energy, the National Institutes of Health and the MIT Center for Environmental Health Sciences.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>