Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT method reveals how radiation damages the body

01.03.2006


Researchers at MIT have devised a new method for examining how radiation damages normal tissue in the body. The knowledge may make it possible to reduce side effects for cancer patients or to develop treatments for radiation exposure.



About 50 percent of all cancer patients are treated with radiation therapy, either alone or in combination with some other type of treatment. Radiation can be very effective in killing tumor cells, but it also kills normal tissues nearby. In the gastrointestinal (GI) tract, this killing of normal cells can cause such side effects as nausea or diarrhea within days or weeks of treatment, and serious GI tissue damage can occur months or years later.

"The long-term effects that occur six months to a year or more after exposure aren’t reversible like the short-term ones, and they are a big unknown," said Associate Professor Jeffrey A. Coderre of MIT’s Department of Nuclear Science and Engineering. The damage is similar to scar tissue formation and can seriously affect tissue function in the GI tract.


"We’ve come up with a tool to selectively irradiate blood vessels to study how radiation damages normal tissue over both the short term and the long term," said Coderre, who is co-author of an article appearing online the week of Feb. 27 in the Proceedings of the National Academy of Sciences (PNAS). "This is the first time it has been possible to do this."

Conventional techniques using external radiation beams are not specific enough for this type of study. "We are selectively delivering a radiation dose to all of the cells that make up the microscopic blood vessels throughout the body," he said.

The method Coderre and his colleagues at MIT and UCLA came up with involves putting boron into a drug administered intravenously in mice, and then subjecting the animals to whole-body neutron radiation using the MIT research reactor. Individual boron atoms in the blood capture a neutron, become unstable, and immediately split in half, giving off two short-range radiations (an alpha particle and a lithium ion) in the process.

The boron is kept in the blood by trapping it inside a type of nanoparticle known as a liposome, which is only billionths of a meter in size. These particles are too big to move from the blood into normal tissues, so the short-range radiations from the boron-neutron reactions in the blood only reach the blood vessel walls and cannot damage the normal tissues outside the blood vessels.

By selectively irradiating the blood vessels, it is possible to see where the breakdown of tissue structure and function starts following radiation exposure. And that information could lead to more effective and less damaging treatments, Coderre said.

Coderre said the method can be applied to other tissues. It also has implications for the development of radioprotectors or treatments for radiation exposure. But perhaps the greatest potential is in understanding the sequence of steps that begin at the time of irradiation but take years to create damage.

For example, there will be approximately 240,000 new cases of prostate cancer diagnosed in the United States in 2006. Depending on the dose of radiation delivered to their tumor, anywhere from 20 percent to 40 percent of those patients could show some degree of late damage.

The lead author on the PNAS paper is Bradley W. Schuller, a graduate student in Coderre’s lab. Peter J. Binns and Kent J. Riley, both research scientists in MIT’s Nuclear Reactor Lab, also are authors on the paper, as are Ling Ma and Professor M. Frederick Hawthorne, both at UCLA.

This research was funded by the U.S. Department of Energy, the National Institutes of Health and the MIT Center for Environmental Health Sciences.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>