Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newly Identified Mechanism Helps Explain Why People of African Descent Are More Vulnerable to TB


A team of scientists has identified a cellular mechanism that may help explain the puzzle of why people of African descent are more susceptible to tuberculosis infection and why, once infected, they develop more severe states of the disease than whites. The team includes researchers from University of California, Los Angeles (UCLA), and Harvard School of Public Health (HSPH). The paper will appear online in the February 23 issue of Science Express.

Approximately eight million people worldwide are infected with TB annually, with an estimated two million people dying from the lung disease each year. TB is caused by the pathogen Mycobacterium tuberculosis, but infection does not automatically result in full-blown disease. In the U.S., minority and foreign-born populations have significantly higher rates of TB than the overall U.S. average, according to the Centers for Disease Control and Prevention. In 2004, African Americans had TB case rates that were eight times higher than whites.

Scientists have understood that mice -- a frequently used animal model in experiments -- combat microbes such as TB by producing nitric oxide in scavenger cells of the immune system known as macrophages. However, this mechanism is not prominent in humans, and the mechanism by which human macrophages kill the tubercle bacillus has remained an additional puzzle. Innate immunity is the rapid immune response of host scavenger cells to recognition of certain patterns of molecules found on pathogens, which has been retained in evolution from fruit flies to humans. A set of receptors on macrophages in humans called Toll-like receptors contribute to innate immune responses. The researchers describe a novel pathway used by human macrophages that may be critical to resisting infection with certain pathogens and that turns out to be critically dependent on vitamin D. This description provides a different way to think about how human immune systems battle pathogens in general.

The research team found that when Toll-like receptors in humans are stimulated by specific molecules of the tubercle bacillus, vitamin D receptors and an enzyme called Cyp27B1, which converts the vitamin from an inactive form to an active form, are dramatically increased. The result of this dual activation is the cleavage of a preexistent protein to a small peptide called cathelicidin, which can kill TB bacilli in the test tube. One of the interesting aspects of this mechanism is that production of vitamin D in humans is dependent on exposure to UV light, generally sunlight, and may not have evolved in mice since they are nocturnal animals.

"These studies began with a very basic exploration of differences in gene expression in two related human white blood cell types known to be involved in host responses to infection, and concluded by revealing a new and potentially important human mechanism for killing intracellular pathogens,” said Philip Liu, postdoctoral scholar in the Department of Immunology and Molecular Genetics at the David Geffen School of Medicine at UCLA and co-lead author of the paper.

African Americans have significantly lower levels of vitamin D in their blood serum than whites because higher levels of melanin -- the pigment that provides color to skin absorbs UV light and reduces African Americans’ ability to produce vitamin D. When the macrophages were stimulated by molecules of the tubercle bacillus that trigger Toll-like receptors, the research team found that cells cultured in serum provided by African Americans produced 63 percent less of the microbe-killing cathelicin than when cultured in serum from whites. Supplementing the serum from African Americans with vitamin D precursor to a range found in serum samples from whites boosted the induction of cathelicidin.

Scientists have long known that African Americans have less vitamin D than whites and that they are more vulnerable to TB. This study helps to resolve two of the puzzles of tuberculosis, the differences between mice and human antibacterial mechanisms, and the susceptibility of people of African and possibly Asian descent to tuberculosis. The researchers suggest a need for clinical trials to investigate the effect of vitamin D supplementation.

“Our results indicate that we have much yet to learn about human immune responses to infections. They also emphasize the importance of vitamin D in human immune responses, and suggest that it is now important to learn how much vitamin D is optimal for innate immunity, and how that can best be achieved through diet or supplementation,” said the senior investigator of these studies, Dr. Robert Modlin, Klein Professor of Dermatology and Professor of Microbiology, Immunology and Molecular Genetics at the David Geffen School of Medicine at UCLA.

“Tuberculosis is a devastating disease that strikes vulnerable populations particularly hard," said immunologist Barry R. Bloom, Dean of the Faculty at HSPH and a co-author of the paper. "This study provides a new mechanism for innate immunity in humans and demonstrates how variations in vitamin D synthesis may make individuals susceptible to TB infection. It is exciting to consider the possibility that innate immunity to tuberculosis and other infections in vulnerable populations might be enhanced by providing a simple vitamin that would cost only pennies a day.”

This research was supported by grants from the National Institutes of Health and the German Research Foundation.

For further information contact:
Harvard School of Public Health
677 Huntington Avenue
Boston, MA 02115
Contact: Robin Herman
(617) 432-4752

UCLA Health Sciences Media Relations
924 Westwood Blvd., Ste. 350
Los Angeles, CA 90095-7301
Contact: Rachel Champeau
(310) 794-2270 or (310) 794-0777

Harvard School of Public Health is dedicated to advancing the public’s health through learning, discovery, and communication. More than 300 faculty members are engaged in teaching and training the 900-plus student body in a broad spectrum of disciplines crucial to the health and well being of individuals and populations around the world. Programs and projects range from the molecular biology of AIDS vaccines to the epidemiology of cancer; from risk analysis to violence prevention; from maternal and children’s health to quality of care measurement; from health care management to international health and human rights.

Robin Herman | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>