Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Identified Mechanism Helps Explain Why People of African Descent Are More Vulnerable to TB

24.02.2006


A team of scientists has identified a cellular mechanism that may help explain the puzzle of why people of African descent are more susceptible to tuberculosis infection and why, once infected, they develop more severe states of the disease than whites. The team includes researchers from University of California, Los Angeles (UCLA), and Harvard School of Public Health (HSPH). The paper will appear online in the February 23 issue of Science Express.



Approximately eight million people worldwide are infected with TB annually, with an estimated two million people dying from the lung disease each year. TB is caused by the pathogen Mycobacterium tuberculosis, but infection does not automatically result in full-blown disease. In the U.S., minority and foreign-born populations have significantly higher rates of TB than the overall U.S. average, according to the Centers for Disease Control and Prevention. In 2004, African Americans had TB case rates that were eight times higher than whites.

Scientists have understood that mice -- a frequently used animal model in experiments -- combat microbes such as TB by producing nitric oxide in scavenger cells of the immune system known as macrophages. However, this mechanism is not prominent in humans, and the mechanism by which human macrophages kill the tubercle bacillus has remained an additional puzzle. Innate immunity is the rapid immune response of host scavenger cells to recognition of certain patterns of molecules found on pathogens, which has been retained in evolution from fruit flies to humans. A set of receptors on macrophages in humans called Toll-like receptors contribute to innate immune responses. The researchers describe a novel pathway used by human macrophages that may be critical to resisting infection with certain pathogens and that turns out to be critically dependent on vitamin D. This description provides a different way to think about how human immune systems battle pathogens in general.


The research team found that when Toll-like receptors in humans are stimulated by specific molecules of the tubercle bacillus, vitamin D receptors and an enzyme called Cyp27B1, which converts the vitamin from an inactive form to an active form, are dramatically increased. The result of this dual activation is the cleavage of a preexistent protein to a small peptide called cathelicidin, which can kill TB bacilli in the test tube. One of the interesting aspects of this mechanism is that production of vitamin D in humans is dependent on exposure to UV light, generally sunlight, and may not have evolved in mice since they are nocturnal animals.

"These studies began with a very basic exploration of differences in gene expression in two related human white blood cell types known to be involved in host responses to infection, and concluded by revealing a new and potentially important human mechanism for killing intracellular pathogens,” said Philip Liu, postdoctoral scholar in the Department of Immunology and Molecular Genetics at the David Geffen School of Medicine at UCLA and co-lead author of the paper.

African Americans have significantly lower levels of vitamin D in their blood serum than whites because higher levels of melanin -- the pigment that provides color to skin absorbs UV light and reduces African Americans’ ability to produce vitamin D. When the macrophages were stimulated by molecules of the tubercle bacillus that trigger Toll-like receptors, the research team found that cells cultured in serum provided by African Americans produced 63 percent less of the microbe-killing cathelicin than when cultured in serum from whites. Supplementing the serum from African Americans with vitamin D precursor to a range found in serum samples from whites boosted the induction of cathelicidin.

Scientists have long known that African Americans have less vitamin D than whites and that they are more vulnerable to TB. This study helps to resolve two of the puzzles of tuberculosis, the differences between mice and human antibacterial mechanisms, and the susceptibility of people of African and possibly Asian descent to tuberculosis. The researchers suggest a need for clinical trials to investigate the effect of vitamin D supplementation.

“Our results indicate that we have much yet to learn about human immune responses to infections. They also emphasize the importance of vitamin D in human immune responses, and suggest that it is now important to learn how much vitamin D is optimal for innate immunity, and how that can best be achieved through diet or supplementation,” said the senior investigator of these studies, Dr. Robert Modlin, Klein Professor of Dermatology and Professor of Microbiology, Immunology and Molecular Genetics at the David Geffen School of Medicine at UCLA.

“Tuberculosis is a devastating disease that strikes vulnerable populations particularly hard," said immunologist Barry R. Bloom, Dean of the Faculty at HSPH and a co-author of the paper. "This study provides a new mechanism for innate immunity in humans and demonstrates how variations in vitamin D synthesis may make individuals susceptible to TB infection. It is exciting to consider the possibility that innate immunity to tuberculosis and other infections in vulnerable populations might be enhanced by providing a simple vitamin that would cost only pennies a day.”

This research was supported by grants from the National Institutes of Health and the German Research Foundation.

For further information contact:
Harvard School of Public Health
677 Huntington Avenue
Boston, MA 02115
Contact: Robin Herman
rherman@hsph.harvard.edu
(617) 432-4752

UCLA Health Sciences Media Relations
924 Westwood Blvd., Ste. 350
Los Angeles, CA 90095-7301
Contact: Rachel Champeau
rchampeau@mednet.ucla.edu
(310) 794-2270 or (310) 794-0777

Harvard School of Public Health is dedicated to advancing the public’s health through learning, discovery, and communication. More than 300 faculty members are engaged in teaching and training the 900-plus student body in a broad spectrum of disciplines crucial to the health and well being of individuals and populations around the world. Programs and projects range from the molecular biology of AIDS vaccines to the epidemiology of cancer; from risk analysis to violence prevention; from maternal and children’s health to quality of care measurement; from health care management to international health and human rights.

Robin Herman | EurekAlert!
Further information:
http://www.hsph.harvard.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>