Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A better tool to study role of iron in Alzheimer’s, Parkinson’s

24.02.2006


Engineers have found a way to pinpoint and identify the tiny iron oxide particles associated with Alzheimer’s and other neurodegenerative diseases in the brain.



The technique is likely to accelerate research on the cause of the diseases and could lead to the first diagnostic procedure for Alzheimer’s in patients while they are alive.

“We’re the first to be able to tell you both the location of the particles and what kind of particles they are,” said Mark Davidson, a University of Florida engineer in UF’s materials science and engineering department.


Davidson and collaborators at UF and Keele University in England have published at least four articles on their research in scholarly journals. Their latest article has been accepted for publication in the Journal of Alzheimer’s Disease.

Alzheimer’s, Huntington’s and Parkinson’s diseases affect millions of Americans and cost billions of dollars annually for patient treatment and care. Alzheimer’s is the most common of the three, afflicting 4.5 million Americans, with numbers projected to grow as the baby boomers age, according to the Alzheimer’s Association. The diseases share some potential symptoms, including physical impairments and dementia.

Although Huntington’s is caused by a genetic disorder, little is understood about precisely how Huntington’s, Alzheimer’s and Parkinson’s wreak havoc in the brain. However, medical researchers have long known that afflicted regions tend to contain unusually high concentrations of iron oxide and other iron-containing particles.

This observation is complicated by the fact that healthy brains also contain iron – indeed, iron is essential for normal brain function.

Traditional methods for studying the properties of “bad iron” tied to neurodegenerative diseases involve staining tissue sections to reveal the location of the iron, or extracting the particles. But these approaches reveal neither the specific iron compounds present nor the relationship of those compounds to specific structures within the tissue.

Electron microscopes don’t work either because their tight resolution makes it impossible to search enough area to find the iron.

“It would take you a career to look at one piece of tissue,” Davidson said.

To solve the problem, Davidson and Chris Batich, a professor of materials science and engineering, along with Albina Mikhaylova, Jon Dobson and Joanna Collingwood of Keele University, turned to an unlikely facility: the synchrotron at the U.S. Department of Energy’s Argonne National Laboratory near Chicago.

The synchrotron is an electron accelerator that produces the most powerful X-rays in the nation. Also known as the Advanced Photon Source, it is usually used for basic science experiments in high-energy physics. But the UF researchers crafted a system of mirrors and lenses that taps one of the cyclotron’s 35 “beam lines,” or X-ray sources, for the new purpose of analyzing brain tissue.

The results are impressive. Whereas an electron microscope can examine tissue one micron, or one thousandth of a centimeter, the new device can look at tissue two or three hundred microns in size. If it locates a particle, it then uses traditional spectroscopic methods to zoom in and determine what sort of iron the particle happens to be.

“It’s the equivalent of being up in an airplane, looking at the city of Tampa, and telling you whether there is a penny there or not,” Davidson said. “And then once we zoom in, we can tell you what kind of penny it is.”

So little is understood about the role of iron in neurodegenerative diseases today that it’s not even clear whether the iron is a symptom or a cause, Batich said. The UF technique may help by giving researchers a clearer view of the problem.

“The basic idea is, if you understand the mechanism, you can understand ways to try to treat the disease,” he said.

But the UF technique could also have clinical value. Davidson said that the group is planning to do experiments that could one day lead to using magnetic resonance imaging, or MRI, to highlight damaging iron in patients’ brains.

“If we can adjust the MRI to look for specific iron compounds related to Alzheimer’s we may be able to provide a technique for early diagnosis before clinical symptoms appear. The major advantage of this is that most treatments currently in development rely on early detection to slow or halt progression of the disease, as they cannot reverse it,” he said.

Mark Davidson | EurekAlert!
Further information:
http://www.microfab.ufl.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>