Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A better tool to study role of iron in Alzheimer’s, Parkinson’s

24.02.2006


Engineers have found a way to pinpoint and identify the tiny iron oxide particles associated with Alzheimer’s and other neurodegenerative diseases in the brain.



The technique is likely to accelerate research on the cause of the diseases and could lead to the first diagnostic procedure for Alzheimer’s in patients while they are alive.

“We’re the first to be able to tell you both the location of the particles and what kind of particles they are,” said Mark Davidson, a University of Florida engineer in UF’s materials science and engineering department.


Davidson and collaborators at UF and Keele University in England have published at least four articles on their research in scholarly journals. Their latest article has been accepted for publication in the Journal of Alzheimer’s Disease.

Alzheimer’s, Huntington’s and Parkinson’s diseases affect millions of Americans and cost billions of dollars annually for patient treatment and care. Alzheimer’s is the most common of the three, afflicting 4.5 million Americans, with numbers projected to grow as the baby boomers age, according to the Alzheimer’s Association. The diseases share some potential symptoms, including physical impairments and dementia.

Although Huntington’s is caused by a genetic disorder, little is understood about precisely how Huntington’s, Alzheimer’s and Parkinson’s wreak havoc in the brain. However, medical researchers have long known that afflicted regions tend to contain unusually high concentrations of iron oxide and other iron-containing particles.

This observation is complicated by the fact that healthy brains also contain iron – indeed, iron is essential for normal brain function.

Traditional methods for studying the properties of “bad iron” tied to neurodegenerative diseases involve staining tissue sections to reveal the location of the iron, or extracting the particles. But these approaches reveal neither the specific iron compounds present nor the relationship of those compounds to specific structures within the tissue.

Electron microscopes don’t work either because their tight resolution makes it impossible to search enough area to find the iron.

“It would take you a career to look at one piece of tissue,” Davidson said.

To solve the problem, Davidson and Chris Batich, a professor of materials science and engineering, along with Albina Mikhaylova, Jon Dobson and Joanna Collingwood of Keele University, turned to an unlikely facility: the synchrotron at the U.S. Department of Energy’s Argonne National Laboratory near Chicago.

The synchrotron is an electron accelerator that produces the most powerful X-rays in the nation. Also known as the Advanced Photon Source, it is usually used for basic science experiments in high-energy physics. But the UF researchers crafted a system of mirrors and lenses that taps one of the cyclotron’s 35 “beam lines,” or X-ray sources, for the new purpose of analyzing brain tissue.

The results are impressive. Whereas an electron microscope can examine tissue one micron, or one thousandth of a centimeter, the new device can look at tissue two or three hundred microns in size. If it locates a particle, it then uses traditional spectroscopic methods to zoom in and determine what sort of iron the particle happens to be.

“It’s the equivalent of being up in an airplane, looking at the city of Tampa, and telling you whether there is a penny there or not,” Davidson said. “And then once we zoom in, we can tell you what kind of penny it is.”

So little is understood about the role of iron in neurodegenerative diseases today that it’s not even clear whether the iron is a symptom or a cause, Batich said. The UF technique may help by giving researchers a clearer view of the problem.

“The basic idea is, if you understand the mechanism, you can understand ways to try to treat the disease,” he said.

But the UF technique could also have clinical value. Davidson said that the group is planning to do experiments that could one day lead to using magnetic resonance imaging, or MRI, to highlight damaging iron in patients’ brains.

“If we can adjust the MRI to look for specific iron compounds related to Alzheimer’s we may be able to provide a technique for early diagnosis before clinical symptoms appear. The major advantage of this is that most treatments currently in development rely on early detection to slow or halt progression of the disease, as they cannot reverse it,” he said.

Mark Davidson | EurekAlert!
Further information:
http://www.microfab.ufl.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>