Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning to love bacteria: Stanford scientist highlights bugs’ benefits

24.02.2006


Bacteria are bad. Mothers and doctors, not to mention the cleaning product industry, repeatedly warn of their dangers. But a Stanford University School of Medicine microbiologist is raising the intriguing idea that persistent bacterial and viral infections have benefits.



Stanley Falkow, PhD, the Robert W. and Vivian K. Cahill Professor in Cancer Research, is publishing his thoughts on this topic in an essay in the Feb. 24 issue of the journal Cell, in which he asks, "Is persistent bacterial infection good for your health?" The essay is based on a talk he was invited to give at Cambridge University in November.

Falkow points out that the medical community and those who fund medical research focus on curing disease. He wonders if this single-mindedness might distract researchers from appreciating the beneficial contributions of micro-organisms to the body.


"Organisms that cause disease are usually considered in the context of harm and epidemics and so on," said Falkow. "But the fact is that a great number of organisms that infect humans come in and set up housekeeping as it were. There are no clinical symptoms of anything wrong and people take the organisms with them to their graves."

It’s not that the organisms in question - such as the bacteria that cause pneumonia or meningitis - are innocuous, he said. It’s just that most of the individuals do not get disease from being infected.

The best recent example of this, said Falkow, is H. pylori. First identified only 25 years ago, the organism earned researchers last year’s Nobel Prize in Medicine or Physiology for being implicated as a cause of ulcers and stomach cancer.

As is typical in the world of microbiology, though, it’s not a simple equation: being infected = ulcers or cancer. At least 80 percent of the world’s population is infected with H. pylori yet has no overt symptoms.

What makes the study of H. pylori even more perplexing is that as such advances as clean water and pasteurization are adopted, the prevalence of H. pylori infection has declined. On the one hand, this has been accompanied by a drop in the incidence of gastric cancer and ulcers. On the other, there has been an increase in esophageal cancer. H. pylori appear to protect against cancer of the esophagus. "So that says that there might be something about persistent infection that might be protective," said Falkow.

This raises the conundrum: By messing with the microbes, are we just replacing one disease with another?

Falkow’s lab has been studying the phenomenon of persistent infection for decades, in particular with H. pylori and Salmonella. He and his colleagues have shown that when infected with these organisms, mice initially show an inflammatory response that then settles down and stays with them for the rest of their lives.

Although very few of these organisms remain in the mice, it is enough to cause the immune system to have an ongoing response. "It’s not so much that the immune system has failed," Falkow explained, "but that the organisms have manipulated the immune system in such a way that they can’t be cleared." If the infections are cleared by antibiotic intervention, the mice are highly susceptible to re-infection, and the re-infection is more likely to progress to disease than the initial infection.

Furthermore, as many infectious diseases have decreased, autoimmune diseases such as ulcerative colitis, Crohn’s disease and diabetes have increased.

"All these observations have been made without necessarily trying to pull it all together," said Falkow. "So what I tried to do in this article is to point out that the continued presence of these organisms in human society may actually be beneficial to the host and that is why they are tolerated by the immune system."

It’s an intriguing idea that requires more research in animal models. "We don’t know what to look for per se," he said. "But we can guess that since a persistently infected host is constantly having its immune system stimulated and refined, that may provide it with resistance to other things."

He wondered whether, as seen with H. pylori, humans are also unknowingly causing the disappearance of other things that have been with us for all of our evolution, and that might play some role in our health. "Could it be this that is responsible for some of the things we see such as the failure of the immune system to act appropriately?" he asked.

The only answer to date is: "It’s complicated." Instead of a persistent infection, some people get very ill from organisms such as Salmonella, H. pylori, tuberculosis and meningitis. How the immune system responds differently in individuals demands further research.

Falkow credits his colleagues for providing the fodder for his essay.

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>