Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anthrax action shapes up

24.10.2001


Anthrax is under close scrutiny.
© AP/Fort Detrick, US Army


Washington’s Dirkin Senate Office gets a careful clean-up.
© AP/Kenneth Lambert


Researchers find two new leads for anti-anthrax drugs.

As fears over bioterrorism attacks spiral, researchers are making progress towards better anthrax drugs - but these are unlikely to reach the drugstore soon.

Of ten confirmed anthrax cases in the United States by Monday, four have been of the severe, inhaled form against which antibiotics often fail. By the time drugs destroy the bacteria responsible, Bacillus anthracis, the organisms have released enough lethal toxin to kill immune cells in the blood, causing fatal blood poisoning.



Two new discoveries lay the groundwork for drugs that could disable the toxin and, along with antibiotics, save lives.

John Young, of the University of Wisconsin in Madison, and his colleagues have pinpointed the protein, on the surface of human cells, which the anthrax toxin latches onto1. In the lab a synthetic version of this ’receptor’ mops up the poison and protects cells. "It serves as a decoy," Young explains.

Part of the toxin attaches to this receptor, punches a hole in the human cell membrane and injects another part, the ’lethal factor’, which destroys proteins in the cell. A second team, led by Robert Liddington of The Burnham Institute in La Jolla, California, have deduced the structure of this lethal factor2.

With a picture of how the toxin’s proteins attack cells, drug companies can search for chemicals that block their activity, the teams hope.

This promise is unlikely to be realized in time to help the current situation, Young and Liddington caution - most optimistic estimates are that improvements will be a year in the making. "We need to design drugs - not for this time round but for the next one," says Liddington.

Alternative medicine

The current crisis gives the hunt for effective treatments new urgency. What we have is no longer "state-of-the-art", says Richard Corlin, director of the American Medical Association in Chicago, Illinois. The latest work "will lead us to a better treatment", he agrees.

Excessive use of an existing antibiotic, ciprofloxacin, could create its own medical problems, Corlin warns. The drug destroys healthy bacteria in the body, so may leave people open to infection from other pathogens.

Overuse of antibiotics and failure to complete the 60-day course virtually "guarantee the emergence of antibiotic resistant strains" of these pathogenic bacteria, he says, making such infections difficult to treat.

Bioterrorists could potentially engineer antibiotic-resistant anthrax. Manufacturing bacteria able to withstand toxin-targeted drugs would be "almost impossible", says John Collier of Harvard Medical School, who contributed to both studies. It would require expert biochemical knowledge to alter specific protein shapes and interactions.

The anthrax vaccine is also problematic. Developed in the 1960s, it involves injecting a crude mix of the toxin’s protein components to stimulate resistance. Vaccination requires six shots and regular boosters. The vaccine is currently produced only in sufficient quantities for the US military.

Several groups are designing more effective versions using purified proteins, explains anthrax researcher Stephen Leppla of the National Institute of Dental and Craniofacial Reseach in Bethesda, Maryland. These are easily administered and produce long-lasting immunity. "Before too long, we’ll have it," he predicts.

Ultimately, we need a whole new arsenal to fight anthrax, says Collier - a new antibiotic, a safe, efficient vaccine, and drugs against toxins. Realizing this goal requires further funding for research and fast-track approval of candidate drugs, he suggests.

Meanwhile most people agree that heightened awareness remains the best form of defence, catching early, cold-like symptoms in time for the disease to be treated. "The key thing is an appropriate degree of surveillance," says Corbin.

Spore show

Anthrax spores, the persistent, dormant form of the bacterium, can cause infection through the skin and intestine, but inhalation is the most dangerous - around 90% of cases result in death.

Turning anthrax into an effective bioweapon is technically difficult - spores must be milled down into a very fine powder (less than 5 micrometres in diameter) for them to reach the depths of the lungs in sufficient quantities to cause infection. A dose of around 10,000 spores is thought to cause a lethal infection.

Spores sent in letters to media and political organizations in the United States had produced ten confirmed cases by the end of Monday, including one death. The deaths of two more postal workers have been linked to the disease. The source of the letters has not yet been found, and the United States is offering a $1-million reward for information leading to the identification of those responsible.

References
  1. Bradley, K.A., Mogridge, J., Mourez, M., Collier, R.J. & Young, J.A.T. Identification of the cellular receptor for the anthrax toxin. Nature, (2001).

  2. Panniter, A. et al. Crystal structure of the anthrax lethal factor. Nature, (2001).


HELEN PEARSON | Nature News Service
Further information:
http://www.nature.com/nsu/011025/011025-9.html
http://www.nature.com/nsu/

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>