Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Invisible Galaxies That Could Not Hide

16.02.2006


Metal-Rich Distant Galaxy Found With ESO’s VLT


A distant quasar is used as a beacon in the Universe. Galaxies and intergalactic material that lie between the quasar and us will reveal themselves by the features seen in the spectrum.



Astronomers, using the unique capabilities offered by the high-resolution spectrograph UVES on ESO’s Very Large Telescope, have found a metal-rich hydrogen cloud in the distant universe. The result may help to solve the missing metal problem and provides insight on how galaxies form.

“Our discovery shows that significant quantities of metals are to be found in very remote galaxies that are too faint to be directly seen”, said Celine Peroux (ESO), lead-author of the paper presenting the results [1].


The astronomers studied the light emitted by a quasar located 9 billion light-years away that is partially absorbed by an otherwise invisible galaxy sitting 6.3 billion light-years away along the line of sight.

The analysis of the spectrum shows that this galaxy has four times more metals than the Sun. This is the first time one finds such a large amount of ‘metals’ [2] in a very distant object. The observations also indicate that the galaxy must be very dusty.

Almost all of the elements present in the Universe were formed in stars, which themselves are members of galaxies. By estimating how many stars formed over the history of the Universe, it is possible to estimate how much metals should have been produced. This apparently straightforward reasoning has however since several years been confronted with an apparent contradiction: adding up the amount of metals observable today in distant astronomical objects falls short of the predicted value. When the contribution of galaxies now observed at cosmological distances is added to that of the intergalactic medium, the total amounts for no more than a tenth of the metals expected.

Studying distant galaxies is however a difficult task. The further a galaxy, the fainter it is, and the small or intrinsically faint ones won’t be observed. This may introduce severe biases in the observations as only the largest and most active galaxies are picked up.

Astronomers therefore came up with other ways to study distant galaxies: they use quasars, most probably the brightest distant objects known, as beacons in the Universe.

Interstellar clouds of gas in galaxies, located between the quasars and us on the same line of sight, absorb parts of the light emitted by the quasars. The resulting spectrum consequently presents dark ‘valleys’ that can be attributed to well-known elements. Thus, astronomers can measure the amount of metals present in these galaxies – that are in effect invisible - at various epochs.

“This can best be done by high-resolution spectrographs on the largest telescopes, such as the Ultra-violet and Visible Echelle Spectrograph (UVES) on ESO’s Kueyen 8.2-m telescope at the Paranal Observatory,” said Péroux.

Her team studied in detail the spectrum of the quasar SDSS J1323-0021 that shows clear indications of absorption by a cloud of hydrogen and metals located between the quasar and us. From a careful analysis of the spectrum, the astronomers found this ‘system’ to be four times richer in zinc than the Sun. Other metals such as iron appear to have condensed into dust grains.

“If a large number of such ’invisible’ galaxies with high metal content were to be discovered, they might well alleviate considerably the missing metals problem”, said Péroux.

The full text of this release along with an image is available at http://www.eso.org/outreach/press-rel/pr-2006/pr-06-06.html

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2006/pr-06-06.html

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>