Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern doctors test robotic surgeon for laparoscopy

15.02.2006


Surgeons in the Southwestern Center for Minimally Invasive Surgery are studying the use of the latest technology — a $1.4 million robot named da Vinci that, with a human at the controls, filters out tremor, enhances precision, offers three-dimensional imaging and eliminates the inverted manipulation of instruments usually required in laparoscopic procedures.


Having a surgeon with four arms is one of the advantages of the latest robotic technology now being studied at UT Southwestern Medical Center.

The $1.4 million robot named da Vinci can hold a camera in one hand while manipulating tiny laparoscopic surgical tools in its other hands. And it never tires like its human counterparts.

With a human surgeon at the controls, da Vinci filters out tremor, enhances precision, offers three-dimensional imaging and eliminates the inverted manipulation of instruments usually required in laparoscopic procedures.



"The buzzword is ’more precise than humanly possible.’ That’s the rationale for this technology," said Dr. Daniel Scott, director of the Southwestern Center for Minimally Invasive Surgery and assistant professor of surgery at UT Southwestern.

Although testing the four-armed robot is still ongoing, Dr. Scott said, "It seems advantageous from the standpoint of precision for some procedures."

Da Vinci is most popular in urology for that reason, especially for prostate operations. It’s also proved useful in surgeries on the esophagus and stomach. Researchers also are investigating its practicality for cardiac surgery such as coronary artery bypass grafting and valve replacement.

"It may well prove useful for general surgery procedures that have traditionally required open incisions like biliary reconstruction or pancreatic surgery," Dr. Scott said.

Laparoscopic surgeries, also called minimally invasive surgeries, are performed via several tiny holes rather than one long incision, reducing post-operative pain and recovery times. The method is increasingly popular.

The first robotic surgery, performed in 1995, relieved the need for an assistant to hold the camera during laparoscopic procedures. Da Vinci represents the next step, offering an instrument that actually performs the surgery based on controls handled by the surgeon.

"It’s not difficult to learn," Dr. Scott said. But he said it does take longer to set up, mostly to position the robot. It (the robot) is also expensive and cumbersome, which limits the operative field and can make it impractical for exploratory surgeries or surgeries that require surgeons to go in more than one area.

"It takes choreography," Dr. Scott explained.

Surgeons are still learning what its full potential is. But to be successful, Dr. Scott added, "It needs to supersede laparoscopy in terms of efficiency before the average surgeon is going to use it. But as this technology continues to evolve, no doubt it will be miniaturized. Smaller is going to be better."
Automation may also be in the future, with a doctor pointing to sections of tissue that need suturing and the robot doing it. That could potentially be integrated with computed tomography or magnetic resonance imaging scans, which could offer opportunities for dress rehearsals of procedures.

Another potential for the technology is for telerobotic surgery across distances — doctors in one city using the robot (to perform an operation) in another city. The first test of such a surgery was a successful trans-Atlantic gallbladder procedure, with the surgeon in New York and the patient in France.

"It certainly could have applications for rural surgery or mentoring surgeons in the community on new procedures," Dr. Scott said.

"There are big permutations for the future of surgery, and that’s why we need to be leaders in this field as a medical school and as a center dedicated to minimally invasive surgery," he said. "We have a strong track record of embracing robotics and research into this new type of technology here, and we look forward to continuing those activities with this new acquisition."

Russell Rian | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>