Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team discovers possible ’universal strategy’ to combat addiction

13.02.2006


An international research team led by the University of Saskatchewan has discovered a signaling pathway in the brain involved in drug addiction, together with a method for blocking its action, that may point to a single treatment strategy for most addictions. Their findings appear in the March issue of the prestigious journal Nature Medicine.



The team, led by Xia Zhang, associate professor in the U of S department of psychiatry, found that a naturally occurring enzyme known as PTEN acts on the part of the brain where many drugs of abuse exert their rewarding effects - the ventral tegmental area (VTA).

"Our results suggest a potential universal strategy for treating drug addiction," Zhang says. "Most drugs of abuse act on the neurons in this area."


He cautions that much work remains to be done before a treatment based on the discovery could be developed to help drug addicts. This includes several years of further testing, including animal and, finally, human trials.

"We have our peptide, but there’s a long way to go before a clinical application," he says.

"Dr. Zhang’s research is important to our understanding of drug addiction. His work epitomizes how health research holds the key to improved health and quality of life for Canadians and people throughout the world," said Dr. Rémi Quirion, Scientific Director of the Canadian Institutes of Health Research Institute of Neurosciences, Mental Health and Addiction.

Zhang, who worked with colleagues at the U of S, University of Toronto, and Vanderbilt University in Tennessee on the project, explains that VTA brain cells are sensitive to serotonin, a hormone associated with learning, sleep and mood. The team discovered that PTEN acts on these serotonin receptors, increasing brain cell activity. This is the same "reward" process sparked by drugs of abuse.

Armed with this knowledge, the team designed a molecule called a peptide, tailored to fit the serotonin receptors and block PTEN. When rats were treated with this PTEN-blocker, it shut down the drug reward process – including the process that induces craving and withdrawal.

The study, funded by the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council, looked at nicotine and THC (the active ingredient in marijuana). However, Zhang says the results could also hold true for other drugs such as cocaine, heroin, and even methamphetamine.

Zhang’s U of S research team is part of the Neural Systems and Plasticity Research Group, one of several interdisciplinary health sciences research groups at the University.

The group, dedicated to the study of brain systems and how they change with experience, draws expertise from numerous departments across six colleges on campus.

Marie-France Poirier | EurekAlert!
Further information:
http://www.cihr-irsc.gc.ca

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>