Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiologic signs more than double sensitivity of MRIs

10.02.2006


Radiologists can make a more accurate preoperative diagnosis of damage to knee cartilage by using four radiologic ’signs’, a recent study found. Using the four signs to identify the extent and type of damage to knee cartilage makes interpreting MRIs with higher degrees of accuracy easier for any radiologist, regardless of their level of expertise.



During the course of this study, reviewers correctly identified 17 (89%) of 19 radial meniscal tears using the four radiologic signs: the truncated triangle, cleft, marching cleft, and the ghost meniscus. Each of these signs describes a unique type of tear and damage to the cartilage of the knee. These types of tears are categorized based upon the easily recognizable patterns which show up on MRIs.

A meniscal tear exposes the underlying cartilage of the knee and can lead to accelerated wear and arthritis from the decreased structural integrity of the knee joint. Fortunately some types of meniscal tears can be repaired. However, "radial tears are significant in that they frequently are irreparable, and even a relatively small tear can lead to advanced wear," said Keith Harper, MD, lead author of the study.


"It is advantageous to preoperatively identify potentially non-repairable meniscal tears, such as radial tears," said Dr. Harper. "When possible and practical, repairing the damaged cartilage is significantly preferred to its removal." Since treatment of meniscal tears is dependent on their configuration, size, and location, the characterization of the tear can help the surgeon and patient decide what type of surgery is necessary as well as what type of rehabilitation will be needed.

"Radiologists can look for and easily recognize the four radiologic ’signs’ in order to prospectively identify radial tears. Using these four radiologic ’signs’ increased the prospective characterization and sensitivity for the detection of radial tears from 37% to 89%," said Dr. Harper.

"We feel that by using the four signs, most radiologists who interpret knee MRIs should have a high degree of success of prospectively identifying radial meniscal tears," said Dr. Harper. "Since using the four signs is fairly easy, similar degrees of accuracy can be achieved by radiologists who may not be experts in the field of musculoskeletal radiology."

"Actually, we were surprised to find in the study that the knowledge of specific and more objective signs for radial tears was a great help for even musculoskeletal radiologists with extensive experience interpreting knee MRIs," said Dr. Harper.

Philip Knowles | EurekAlert!
Further information:
http://www.arrs.org

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>