Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing toxic side effects of inflammatory disease therapy

10.02.2006


Researchers at the University of California, San Diego (UCSD) School of Medicine have developed a mouse model that could help scientists develop better drugs to fight autoimmune and inflammatory disorders such as multiple sclerosis and rheumatoid arthritis.



Inflammation is a process by which the white blood cells and chemicals of the immune system rally to protect the body from infection and foreign substances such as bacteria and viruses. In autoimmune diseases, however, this defense system triggers an inflammatory response when there are no foreign substances to fight off, or the defense system goes into "overdrive" and forgets how to turn off. In these diseases, the body’s normally protective immune system attacks and damages its own healthy tissues.

UCSD researcher Mark H. Ginsberg, M.D., professor of Medicine at the University of California, San Diego (UCSD) School of Medicine, and his colleagues have identified a mechanism to selectively disrupt signaling to recruit lymphocytes and monocytes – white blood cells sent to sites of inflammation to fight infection – while maintaining the body’s other essential immune system functions. Their findings appear online on February 9 in advance of print publication in the March issue of the Journal of Clinical Investigation.


In the case of certain autoimmune diseases, the alpha 4 integrins cause white blood cells to accumulate at the site of the disease, resulting in inflammation. An integrin is a surface molecule found on the exterior of cells that helps cells adhere and migrate. It is also believed to be responsible for a role in cell signaling, which allows cells to communicate with the extracellular environment. One of the promising treatments for disorders such as multiple sclerosis, inflammatory bowel disease and rheumatoid arthritis – the alpha 4 integrin antagonist – works by blocking cell adhesion. However, this anti-inflammatory therapy could cause adverse side effects, such as impairment of the immune system and the patient’s ability to develop new red and white blood cells in the bone marrow, a process called hematopoiesis.

"Our goal was to identify a more specific target of alpha 4 integrin molecules in order to interfere with their roles in disease progression while sparing alpha4 functions required for normal health," said David M. Rose, D.V.M., Ph.D., assistant professor of medicine at UCSD, and co-author of the study.

The research team created mutant mice known as "alpha4(Y991A) mice," in which the alpha4 integrin can no longer bind to a signaling protein inside the cell called paxillin. Previously generated alpha4 integrin deficient mutant mice died at birth because too many aspects of alpha4 function were changed. The new alpha4(Y991A) mice have an impairment only in the interaction between alpha4 and paxillin, and thus have fewer effects on development. The researchers discovered that, in contrast to normal mice, alpha4(Y991A) mice exposed to an inflammatory stimulus recruited fewer circulating white blood cells (B and T cells) to the region of exposure. However, the development of new B and T cells was unaffected.

The authors suggest that these mice are a valuable tool to test models of inflammatory and autoimmune diseases of humans, and that a new class of pharmaceutical agents that target the specific interaction of paxillin and alpha4 integrin could be important future treatments of inflammatory disease.

"We were surprised to find that the mutation actually had very little effect on the animal’s development of lymphocytes, the white blood cells that fight infection," said Rose. "This could prove to be an important first step in development of a more effective drug to target alpha4 integrins in autoimmune and inflammatory disease of humans."

Additional co-authors include Kenneth Kaushansky, M.D., Chloé C. Féral, Jaewon Han, Norman Fox and Gregg J. Silverman, UCSD Department of Medicine.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>