Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers challenge sepsis theory

09.02.2006


Propose new approach for better treatment of deadly condition



A Mayo Clinic research team has challenged the accepted theory on the cause of sepsis -- a condition in which the body’s cells generate fever, shock and often death. Sepsis is thought to occur when poisons from bacterial infection interfere with the cells. The Mayo researchers challenge that long-held concept with a new theory in an opinion piece in the current issue of Trends in Molecular Medicine. Their findings suggest that sepsis begins with a change in certain cellular receptors that then provoke widespread inflammation, even in the absence of bacteria or their poisons.

"We think people have been focusing too exclusively on a single causal factor of sepsis for the last 150 years and, as a result, therapeutically aiming at the wrong target -- the bacteria and the poisons they produce," says senior author Jeffrey Platt, M.D. "That’s why the death rate remains so high despite efforts to block the poisons."


The researchers define a new "first step" that initiates the sepsis syndrome cycle. In this step, a critical receptor for bacterial poisons and for some of the body’s own substances is liberated from "natural suppression." Once free to function, the receptor can trigger the catastrophic cascade of events that is sepsis. The sepsis syndrome can occur during a bacterial infection, as the accepted medical principle holds, or -- as the Mayo Clinic team theory suggests -- it also can occur when substances the body makes act like the bacterial poisons. The Mayo investigators suggest that some or even many cases of sepsis may actually be caused by these normal body substances. The Mayo team argues that this new understanding of how sepsis arises could lead to new treatments for this major medical problem.

Significance of the Mayo Clinic Research

Approximately 700,000 cases of sepsis occur annually in the United States, half of which are fatal. Sepsis is the second most common cause for admissions to critical care units and can be a significant complication of some heart surgeries. The Mayo Clinic researchers believe current sepsis treatment isn’t more effective because the theory of sepsis is too narrow. Current treatments don’t target all causes of sepsis syndrome -- only the bacterial poison cause -- which was described by a 19th century researcher as "the putrid gift."

"Our work is the first to show that this change in receptors in the body is the first true step in the sepsis syndrome, rather than the introduction of a poison," explains Dr. Platt. "The importance then becomes clear. If we really do now have the first cause of sepsis -- not the bacteria, but the unconstrained receptors -- then we can therapeutically interfere with that receptor release mechanism by designing new treatments and possibly, and at long last, develop drugs that treat all cases of sepsis."

Challenging Existing Theories

Dr. Platt and his colleague, Gregory Brunn, Ph.D., say the evidence they’ve published compels this conceptual shift about sepsis. "The problem with the concept of sepsis, and what provoked some of our interest, is that it has been known for 10 years that when you treat with anything that interrupts bacterial poisons, it has no impact on the septic disease. That suggests that perhaps the poisons don’t cause sepsis after all," Dr. Platt says. "Problems such as this caused us to ask, ’Could there be something else driving sepsis, other than the classic poisoning explanation?’"

Mayo Discovers Key Piece of the Puzzle

Dr. Platt and colleagues discovered several years ago that certain naturally-occurring molecules can stimulate receptors once thought to be exclusive for the bacterial poisons (endotoxins). Once stimulated, the receptors (toll-like receptors) set the sepsis cycle into motion. "This finding was very exciting," notes Dr. Platt. "It explained how the sepsis syndrome can occur when there isn’t an infection -- which it does in some cases."

However, Drs. Brunn and Platt saw an obvious problem with this explanation. If normal substances from the body can stimulate toll-like receptors and cause the sepsis syndrome, why aren’t we all desperately ill with sepsis? Dr. Brunn explains, "Our bodies are not poised to respond to sepsis. Our bodies are held in check by the fact that this molecule-receptor system is constrained in its activity. What causes sepsis -- and the syndrome like sepsis that can happen in cancer or trauma or in response to drugs -- is that this receptor gets released from its constraint. That’s the first step that actually initiates sepsis." Research is underway to discover new therapies that could prevent, blunt or reverse the release of the constrained receptor.

Robert Nellis | EurekAlert!
Further information:
http://www.sciencedirect.com/science/journal/14714914
http://www.mayoclinic.org/news

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>