Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising HPV Test: Fast, Precise and Low-Cost

09.02.2006


Researchers at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) in the group of Markus Schmitt have developed a detection method for human papillomaviruses (HPV) which allows them to identify, in a quick and highly reliable manner, high-risk viruses that cause cervical cancer.



The prime risk factor for cervical cancer is an infection with human papillomaviruses. However, not all HPV types are a health hazard. Scientists distinguish between high-risk types and more harmless family members. There are detection methods available that basically allow one to precisely identify the virus type. However, current methods are not really suitable for large-scale use. In addition, it is not possible to unambiguously detect multiple infections with several different virus types.

An approach developed by virus researchers of the German Cancer Research Center now provides a promising alternative. Markus Schmitt and his colleagues describe their test method in the latest issue of the Journal of Clinical Microbiology*: They first isolate the viral genetic material from a tissue sample, amplify and label it. The enriched DNA material is subsequently mixed with different probes, i.e. small DNA fragments each of which is typical for a specific virus type. If the DNA sequences of the viral DNA under study and the probe are identical, they will bind to each other. The probe thus isolates the unknown DNA from the mixture – a process called hybridization. The probes, in turn, are coupled to tiny plastic beads of different colors, with each type of probe attached to beads of the same color. A reading device measures the amount of hybridized viral DNA on the beads. By their characteristic color, the beads tell us which viral DNA was present in the sample.


Schmitt and his colleagues have developed 22 highly sensitive probes which even make it possible to distinguish HPV types whose genomes vary ever so slightly. In addition, a “universal” probe facilitates detection of yet unknown HPV types. The researchers found out that the genotyping is in no way inferior to previous, more complex investigation methods. It is even more sensitive (a minimum of six different virus types can be detected in one sample) and less error-prone (the results are reproducible at any time). These are excellent prerequisites for using the test as a high-throughput method.

The enriched DNA material from 500 tissue samples can be tested for up to 100 HPV types – all in just one day. Since the test can be performed with relatively little effort and at low costs it is suitable for use in large-scale population studies to investigate distribution, variety and infection behavior of the cancer causing viruses. Moreover, the detection method can help to better assess the effectiveness of a vaccination against the virus. Finally, virus typing would be a useful supplement in routine diagnostics. Particularly women with chronic high-risk HPV infection might benefit from a combination of the new HPV test and a Pap smear, which is part of early cancer diagnosis measures covered by the statutory health insurance.

Cervical cancer is the second most frequent cancer among women worldwide. For 2002, an estimated 493,000 new cases were expected and more than 273,000 women died of cervical cancer in the same year (International Agency for Research on Cancer). The Robert Koch Institute estimated in 2000 that slightly over 6,500 women are newly diagnosed with the disease each year in Germany. The tumor usually develops slowly; precancerous changes are diagnosed in about 50% of cases. If detected early, cervical cancer can be treated and cured without difficulty.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>