Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising HPV Test: Fast, Precise and Low-Cost

09.02.2006


Researchers at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) in the group of Markus Schmitt have developed a detection method for human papillomaviruses (HPV) which allows them to identify, in a quick and highly reliable manner, high-risk viruses that cause cervical cancer.



The prime risk factor for cervical cancer is an infection with human papillomaviruses. However, not all HPV types are a health hazard. Scientists distinguish between high-risk types and more harmless family members. There are detection methods available that basically allow one to precisely identify the virus type. However, current methods are not really suitable for large-scale use. In addition, it is not possible to unambiguously detect multiple infections with several different virus types.

An approach developed by virus researchers of the German Cancer Research Center now provides a promising alternative. Markus Schmitt and his colleagues describe their test method in the latest issue of the Journal of Clinical Microbiology*: They first isolate the viral genetic material from a tissue sample, amplify and label it. The enriched DNA material is subsequently mixed with different probes, i.e. small DNA fragments each of which is typical for a specific virus type. If the DNA sequences of the viral DNA under study and the probe are identical, they will bind to each other. The probe thus isolates the unknown DNA from the mixture – a process called hybridization. The probes, in turn, are coupled to tiny plastic beads of different colors, with each type of probe attached to beads of the same color. A reading device measures the amount of hybridized viral DNA on the beads. By their characteristic color, the beads tell us which viral DNA was present in the sample.


Schmitt and his colleagues have developed 22 highly sensitive probes which even make it possible to distinguish HPV types whose genomes vary ever so slightly. In addition, a “universal” probe facilitates detection of yet unknown HPV types. The researchers found out that the genotyping is in no way inferior to previous, more complex investigation methods. It is even more sensitive (a minimum of six different virus types can be detected in one sample) and less error-prone (the results are reproducible at any time). These are excellent prerequisites for using the test as a high-throughput method.

The enriched DNA material from 500 tissue samples can be tested for up to 100 HPV types – all in just one day. Since the test can be performed with relatively little effort and at low costs it is suitable for use in large-scale population studies to investigate distribution, variety and infection behavior of the cancer causing viruses. Moreover, the detection method can help to better assess the effectiveness of a vaccination against the virus. Finally, virus typing would be a useful supplement in routine diagnostics. Particularly women with chronic high-risk HPV infection might benefit from a combination of the new HPV test and a Pap smear, which is part of early cancer diagnosis measures covered by the statutory health insurance.

Cervical cancer is the second most frequent cancer among women worldwide. For 2002, an estimated 493,000 new cases were expected and more than 273,000 women died of cervical cancer in the same year (International Agency for Research on Cancer). The Robert Koch Institute estimated in 2000 that slightly over 6,500 women are newly diagnosed with the disease each year in Germany. The tumor usually develops slowly; precancerous changes are diagnosed in about 50% of cases. If detected early, cervical cancer can be treated and cured without difficulty.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>