Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising HPV Test: Fast, Precise and Low-Cost

09.02.2006


Researchers at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) in the group of Markus Schmitt have developed a detection method for human papillomaviruses (HPV) which allows them to identify, in a quick and highly reliable manner, high-risk viruses that cause cervical cancer.



The prime risk factor for cervical cancer is an infection with human papillomaviruses. However, not all HPV types are a health hazard. Scientists distinguish between high-risk types and more harmless family members. There are detection methods available that basically allow one to precisely identify the virus type. However, current methods are not really suitable for large-scale use. In addition, it is not possible to unambiguously detect multiple infections with several different virus types.

An approach developed by virus researchers of the German Cancer Research Center now provides a promising alternative. Markus Schmitt and his colleagues describe their test method in the latest issue of the Journal of Clinical Microbiology*: They first isolate the viral genetic material from a tissue sample, amplify and label it. The enriched DNA material is subsequently mixed with different probes, i.e. small DNA fragments each of which is typical for a specific virus type. If the DNA sequences of the viral DNA under study and the probe are identical, they will bind to each other. The probe thus isolates the unknown DNA from the mixture – a process called hybridization. The probes, in turn, are coupled to tiny plastic beads of different colors, with each type of probe attached to beads of the same color. A reading device measures the amount of hybridized viral DNA on the beads. By their characteristic color, the beads tell us which viral DNA was present in the sample.


Schmitt and his colleagues have developed 22 highly sensitive probes which even make it possible to distinguish HPV types whose genomes vary ever so slightly. In addition, a “universal” probe facilitates detection of yet unknown HPV types. The researchers found out that the genotyping is in no way inferior to previous, more complex investigation methods. It is even more sensitive (a minimum of six different virus types can be detected in one sample) and less error-prone (the results are reproducible at any time). These are excellent prerequisites for using the test as a high-throughput method.

The enriched DNA material from 500 tissue samples can be tested for up to 100 HPV types – all in just one day. Since the test can be performed with relatively little effort and at low costs it is suitable for use in large-scale population studies to investigate distribution, variety and infection behavior of the cancer causing viruses. Moreover, the detection method can help to better assess the effectiveness of a vaccination against the virus. Finally, virus typing would be a useful supplement in routine diagnostics. Particularly women with chronic high-risk HPV infection might benefit from a combination of the new HPV test and a Pap smear, which is part of early cancer diagnosis measures covered by the statutory health insurance.

Cervical cancer is the second most frequent cancer among women worldwide. For 2002, an estimated 493,000 new cases were expected and more than 273,000 women died of cervical cancer in the same year (International Agency for Research on Cancer). The Robert Koch Institute estimated in 2000 that slightly over 6,500 women are newly diagnosed with the disease each year in Germany. The tumor usually develops slowly; precancerous changes are diagnosed in about 50% of cases. If detected early, cervical cancer can be treated and cured without difficulty.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>