Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Develop Malaria Forecasting Tool To Predict Disease Risk


A new tool to predict epidemics of malaria up to five months in advance has been developed by a scientist at the University of Liverpool.

The model uses predictions of climate variability to indicate the level of risk of an epidemic up to five months in advance of the peak malaria season – the earliest point at which predictions have ever been made. The model will assist doctors and health care providers in preventing and controlling the disease.

Malaria is one of the world’s deadliest diseases, killing more than one million people every year, as well as infecting a further 500 million worldwide. The mosquito-borne illness is endemic in several regions globally, but is most acute in Africa, home to an estimated 90 per cent of all cases.

Dr Andy Morse from the Department of Geography and colleagues from the European Centre for Medium Range Weather Forecasting; Columbia University, New York and the Ministry of Health in Botswana, based their early-warning model on population vulnerability, rainfall and health surveillance data and then used forthcoming season forecasts for rainfall to predict unusual changes in the seasonal pattern of disease in Botswana. The team based their study on Botswana as its climate makes it susceptible to malaria epidemics.

Dr Morse said: “The risk of an epidemic in tropical countries such as Botswana increases dramatically shortly after a season of good rainfall – when the heat and humidity allow mosquito populations to thrive. By using a number of climate models, we were able to compose weather predictions for such countries, which could then be used to calculate the severity of an epidemic, months before its occurrence.”

The team created a prediction system using seven, state-of-the-art, global climate models which produce weather forecasts up to six months in advance. The system allows researchers to assess the probable effect of weather conditions on a malaria epidemic.

Joanna Robotham | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>