Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Develop Malaria Forecasting Tool To Predict Disease Risk

08.02.2006


A new tool to predict epidemics of malaria up to five months in advance has been developed by a scientist at the University of Liverpool.



The model uses predictions of climate variability to indicate the level of risk of an epidemic up to five months in advance of the peak malaria season – the earliest point at which predictions have ever been made. The model will assist doctors and health care providers in preventing and controlling the disease.

Malaria is one of the world’s deadliest diseases, killing more than one million people every year, as well as infecting a further 500 million worldwide. The mosquito-borne illness is endemic in several regions globally, but is most acute in Africa, home to an estimated 90 per cent of all cases.


Dr Andy Morse from the Department of Geography and colleagues from the European Centre for Medium Range Weather Forecasting; Columbia University, New York and the Ministry of Health in Botswana, based their early-warning model on population vulnerability, rainfall and health surveillance data and then used forthcoming season forecasts for rainfall to predict unusual changes in the seasonal pattern of disease in Botswana. The team based their study on Botswana as its climate makes it susceptible to malaria epidemics.

Dr Morse said: “The risk of an epidemic in tropical countries such as Botswana increases dramatically shortly after a season of good rainfall – when the heat and humidity allow mosquito populations to thrive. By using a number of climate models, we were able to compose weather predictions for such countries, which could then be used to calculate the severity of an epidemic, months before its occurrence.”

The team created a prediction system using seven, state-of-the-art, global climate models which produce weather forecasts up to six months in advance. The system allows researchers to assess the probable effect of weather conditions on a malaria epidemic.

Joanna Robotham | alfa
Further information:
http://www.liv.ac.uk

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>