Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity may be factor in accelerated type I diabetes in some patients

06.02.2006


Obesity, long known as a cause of type II diabetes, may accelerate the onset of type 1 diabetes in some – but not all – groups of younger patients, according to research at Wake Forest University School of Medicine and six clinical sites nationally.



"The increasing prevalence of childhood obesity may substantially account for the younger age at onset of type 1 diabetes observed in various populations," said the research team, writing in the February issue of Diabetes Care.

But the connection to obesity was observed only in those patients in which the production of insulin by beta cells in the pancreas already had been severely compromised, said Ralph B. D’Agostino Jr., Ph.D., professor of public health sciences-biostatistics at the medical school, and a co-author of the paper.


D’Agostino also is deputy director of the study’s National Coordinating Center, which is located at the School of Medicine. In the paper, the researchers said, "These patients have compromised pancreatic beta cell function and can no longer compensate for the additional metabolic demands associated with higher body mass index."

Body mass index (BMI) is computed from weight and height; a BMI over 30 indicates obesity. The body uses insulin in metabolizing carbohydrates and in regulating glucose (blood sugar) levels in the body, and diabetes results when there is insufficient insulin to meet the need.

"Whether the reduced beta cell function is solely due to an autoimmune-mediated attack or whether non-autoimmune factors also contribute is a distinction that we are unable to make in this study," the researchers said.

The researchers did determine that there was no statistical association between age of onset and BMI in those diabetes patients who still had relatively well-preserved beta cell function.

The researchers also found that low birth weight may also be a factor in accelerating the onset of type 1 diabetes, which is now considered an autoimmune disorder, in which the body’s own defenses turn on it.

As birth weight decreased, the age at which type 1 diabetes appeared advanced. The study was part of the Search for Diabetes in Youth, and involved 449 participants who were under 20 at the time of the diabetes diagnosis.

The six clinical sites were the University of Colorado Health Sciences Center in Denver, the University of South Carolina in Columbia, Children’s Hospital Medical Center in Cincinnati, Children’s Hospital and Regional Medical Center in Seattle, the Sansum Medical Research Institute in Santa Barbara, Calif., and University of Hawaii.

Search for Diabetes in Youth is trying to determine the prevalence and incidence of childhood diabetes and document how much childhood diabetes is type 1, how much is type 2, and how much is due to other rare causes. The study is funded by the Centers for Disease Control and Prevention and the National Institute of Diabetes and Digestive and Kidney Diseases.

According to the American Diabetes Association, type 1 diabetes results from the body’s failure to produce insulin, the hormone that "unlocks" the cells of the body, allowing glucose to enter and fuel them. Type 2 diabetes results from insulin resistance (a condition in which the body fails to properly use insulin), combined with relative insulin deficiency.

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>