Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetic hearts make unhealthy switch to high-fat diet

06.02.2006


The high-fat "diet" that diabetic heart muscle consumes helps make cardiovascular disease the most common killer of diabetic patients, according to a study done at Washington University School of Medicine in St. Louis. The study will appear in the February 7 issue of the Journal of the American College of Cardiology and is now available online.



Sixty-five percent of people with diabetes die from heart attack or stroke. When the researchers investigated fuel consumption in heart muscle, they found that heart muscle of type 1 diabetic patients relies heavily on fat and very little on sugar for its energy needs. In contrast, heart muscle in non-diabetics doesn’t have this strong preference for fat and can use either sugar (glucose) or fat for energy, depending on blood composition, hormone levels or how hard the heart is working.

"The diabetic heart’s overdependence on fat could partly explain why diabetic patients suffer more pronounced manifestations of coronary artery disease," says senior author Robert J. Gropler, M.D., professor of radiology, medicine and biomedical engineering and director of the Cardiovascular Imaging Laboratory at the Mallinckrodt Institute of Radiology at the School of Medicine. "The heart needs to use much more oxygen to metabolize fats than glucose, making the diabetic heart more sensitive to drops in oxygen levels that occur with coronary artery blockage."


Compared to non-diabetics, diabetic patients often have larger infarctions and suffer more heart failure and sudden death when the heart experiences an ischemic (low-oxygen) event.

In addition, when the diabetic heart burns fat, it accumulates reactive oxygen molecules that interfere with the fuel consumption mechanism and encourage the accumulation of fats in the muscle cells. This can lead to increased inflammation, cell death and heart dysfunction.

The diabetic heart’s reliance on fat molecules for energy was previously observed in experiments using diabetic animals. But this is the first time researchers have confirmed that burning of fatty acids in the heart muscle is increased in humans with diabetes. In this study, 11 healthy, non-diabetic people were compared to 11 otherwise healthy people with type 1 diabetes. The researchers found that the diabetic patients had much higher levels of fats in their blood and had an increased uptake of fatty acids into heart muscle cells.

The cells of diabetic hearts not only absorbed more fat, they also burned a higher percentage of the fats they took in. As a result, diabetic heart muscle used about half as much glucose and four times more fat for energy than the hearts of non-diabetics.

The researchers are now engaged in a larger study of heart muscle metabolism in type 2 diabetics. Patients in the study are divided into two groups with one group receiving standard therapies to normalize blood glucose levels and the other group receiving additional therapies designed to decrease the amount of fat in the blood. The study is still accruing patients, and people with type 2 diabetes who would like to participate can call 314-362-8608.

If the increased blood-fat levels are confirmed to be responsible for the dysfunctional metabolism of diabetic heart muscle, reducing fat levels may become an important way to decrease illness and death from cardiovascular disease in diabetics, according to the authors.

"We believe it’s not enough to control blood glucose in diabetes," Gropler says. "You also have to target fat delivery to the heart. If you decrease the fat delivery through a combination of diet, exercise and drugs, you’ll improve the heart’s ability to use other energy sources, which will improve heart health."

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

Balancing nuclear and renewable energy

26.04.2018 | Power and Electrical Engineering

Researchers 3-D print electronics and cells directly on skin

26.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>