Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Post-pregnancy events promote breast tumor metastasis


Changes in the tissue environment of the breast that occur after pregnancy promote the metastasis of breast tumor cells. The paper by McDaniel et al., “Remodeling of the mammary microenvironment following lactation promotes breast tumor cell metastasis,” appears in the February issue of The American Journal of Pathology and is accompanied by a commentary.

This work also highlights an important shift in thinking about what influences cancers to metastasize: the move from studying specific gene mutations to studying the tumor environment. The focus on the tumor environment, or stroma, has been gaining strength in recent years, as detailed in the commentary by Sonnenschein and Soto.

The human breast undergoes dramatic changes during the course of pregnancy, lactation, and involution (the process by which the milk-producing tissue is reabsorbed and the breast returns to “normal”). These processes require mammary cells to proliferate, differentiate, and finally die, events that are partly driven by changes in the environment surrounding the cells, or extracellular matrix. How these changes affect the outcome of breast cancer is of great interest, especially considering the epidemiological link between breast cancer after pregnancy and poor prognosis.

Under the leadership of Dr. Pepper Schedin, researchers at the AMC Cancer Research Center of University of Colorado Health Science Center compared extracellular matrix from mammary glands of rats exhibiting post-lactation involution to that of virgin rats. They found that the involution matrix contained higher levels of matrix proteases and degraded proteins and generally more matrix proteins than virgin matrix, indicating that involution matrix was undergoing significant structural changes. When immortalized “normal” human breast cells were grown on each type of matrix, only virgin matrix supported formation of mammary duct-like structures, further demonstrating signaling differences inherent to the source of matrix.

In vitro invasion assays established that human breast tumor cells migrated much better through the involution matrix than through virgin matrix. Schedin’s group next performed in vivo experiments to further confirm that post-lactation involution matrix enhances tumor cell migration (i.e. metastasis). Breast tumor cells were mixed with either involution or virgin matrix, and the mixtures were injected into the mammary fat pads of mice. Human tumor cells formed small mammary tumors, regardless of matrix source; however, the involution matrix exerted a more powerful push toward metastasis, with cells spreading to the lung, liver and kidney, expressing higher levels of the human vascular growth factor VEGF and increasing blood vessel development.

These data demonstrate the importance of the changing breast environment in the evolution of breast cancer. Specifically, changes in the extracellular matrix that occur during post-pregnancy involution may actually promote metastasis of breast cancer following pregnancy. The authors further offer that these data may explain why women with breast cancer diagnosed up to 5 years after pregnancy are at greater risk of developing metastases.

Audra Cox | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>