Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai School of Medicine launches a phase II clinical trial for new gene transfer drug study

03.02.2006


As many as 8-10 million Americans have Peripheral Artery Disease (PAD), by age 70, roughly 20 percent of the population has it, and people with PAD face a six-to-seven times higher risk of heart attack or stroke.



PAD, commonly seen in patients with a history of smoking, diabetes, and/or coronary artery disease, is the build up of fatty deposits in the inner linings of the artery walls of the heart and brain. These blockages restrict blood circulation, mainly in arteries leading to the kidneys, stomach, arms, legs and feet. In its early stages a common symptom is uncomfortable cramping or fatigue in the legs brought on by walking and relieved with rest--a condition called intermittent claudication.

The WALK study, led by the Mount Sinai School of Medicine and sponsored by Genzyme Corporation, will determine if a new gene transfer treatment, Ad2/HIF-1a/VP16, helps ease the pain caused by intermittent claudication.


"The leg pain experienced by people with PAD is very different than leg pain caused by joint problems or arthritis," said Dr. Jeffrey W. Olin, the Principal Investigator for the WALK study and Professor of Medicine at the Mount Sinai School of Medicine and Director of Vascular Medicine and the Vascular Diagnostic Laboratory in the Zena and Michael A. Wiener Cardiovascular Institute of The Mount Sinai Medical Center. "This gene transfer treatment could offer new hope for the millions of people that suffer from the leg pain associated with peripheral arterial disease."

HIF-1a (Hypoxia-inducible factor-one alpha gene) is produced naturally in the body when there is not enough oxygen reaching the leg tissue. The study drug, Ad2/HIF-1a/VP16, is very similar to the HIF-1a the body naturally produces but has been genetically changed to include important biological characteristics that may grow new blood vessels and improve blood flow in legs.

Mount Sinai and 40 other sites involved in the trial are seeking to enroll approximately 300 men and women in the United States and Europe. The study is open to male or female patients between the ages of 40-80 who suffer from PAD that has progressed to activity-limiting discomfort in at least one leg. The study will assess the safety and effectiveness of three different doses of Ad2/HIF-1a/VP16 compared to placebo in treatment of intermittent claudication.

A Phase I study was conducted using Ad2/HIF-1a/VP16 in patients with Critical Limb Ischemia and preliminary safety and potential bioactivity were demonstrated. Regulatory authorities in both the United States and Europe have reviewed this protocol and authorized Genzyme to proceed with enrollment.

If you are interested in participating, please call (212) 241-8902 or visit www.walkstudy.com.

Cardiovascular Research At Mount Sinai

The Zena and Michael A. Wiener Cardiovascular Institute and the Marie-Josée and Henry R. Kravis Center for Cardiovascular Health at The Mount Sinai Medical Center are preeminent resources for the study and treatment of heart and blood vessel diseases. Committed to finding new and improved methods of diagnosis, treatment and prevention, they comprise a multidisciplinary effort that brings together the extraordinary expertise of Mount Sinai School of Medicine and The Mount Sinai Hospital in cardiovascular medicine, cardiovascular surgery, medical education, research and community service, with state-of-the-art facilities for patient care, advanced laboratories for scientific research and leading programs for postgraduate education of clinician-scientists.

Mount Sinai School of Medicine

Located in Manhattan, Mount Sinai School of Medicine is internationally recognized for ground-breaking clinical and basic-science research, and innovative approaches to medical education. Through the Mount Sinai Graduate School of Biological Sciences, Mount Sinai trains biomedical researchers with an emphasis on the rapid translation of discoveries of basic research into new techniques for fighting disease. One indication of Mount Sinai’s leadership in scientific investigation is its receipt during fiscal year 2004 of $153.2 million. Mount Sinai now ranks 25th among the nation’s medical schools in receipt of research support from NIH. Mount Sinai School of Medicine also is known for unique educational programs such as the Humanities in Medicine program, which creates opportunities for liberal arts students to pursue medical school, and instructional innovations like The Morchand Center, the nation’s largest program teaching students and physicians with "standardized patients" to become not only highly skilled, but compassionate caregivers. Long dedicated to improving its community, the School extends its boundaries to work with East Harlem and surrounding communities to provide access to health care and educational programs to at risk populations.

| EurekAlert!
Further information:
http://www.mssm.edu
http://www.walkstudy.com

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>