Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai School of Medicine launches a phase II clinical trial for new gene transfer drug study

03.02.2006


As many as 8-10 million Americans have Peripheral Artery Disease (PAD), by age 70, roughly 20 percent of the population has it, and people with PAD face a six-to-seven times higher risk of heart attack or stroke.



PAD, commonly seen in patients with a history of smoking, diabetes, and/or coronary artery disease, is the build up of fatty deposits in the inner linings of the artery walls of the heart and brain. These blockages restrict blood circulation, mainly in arteries leading to the kidneys, stomach, arms, legs and feet. In its early stages a common symptom is uncomfortable cramping or fatigue in the legs brought on by walking and relieved with rest--a condition called intermittent claudication.

The WALK study, led by the Mount Sinai School of Medicine and sponsored by Genzyme Corporation, will determine if a new gene transfer treatment, Ad2/HIF-1a/VP16, helps ease the pain caused by intermittent claudication.


"The leg pain experienced by people with PAD is very different than leg pain caused by joint problems or arthritis," said Dr. Jeffrey W. Olin, the Principal Investigator for the WALK study and Professor of Medicine at the Mount Sinai School of Medicine and Director of Vascular Medicine and the Vascular Diagnostic Laboratory in the Zena and Michael A. Wiener Cardiovascular Institute of The Mount Sinai Medical Center. "This gene transfer treatment could offer new hope for the millions of people that suffer from the leg pain associated with peripheral arterial disease."

HIF-1a (Hypoxia-inducible factor-one alpha gene) is produced naturally in the body when there is not enough oxygen reaching the leg tissue. The study drug, Ad2/HIF-1a/VP16, is very similar to the HIF-1a the body naturally produces but has been genetically changed to include important biological characteristics that may grow new blood vessels and improve blood flow in legs.

Mount Sinai and 40 other sites involved in the trial are seeking to enroll approximately 300 men and women in the United States and Europe. The study is open to male or female patients between the ages of 40-80 who suffer from PAD that has progressed to activity-limiting discomfort in at least one leg. The study will assess the safety and effectiveness of three different doses of Ad2/HIF-1a/VP16 compared to placebo in treatment of intermittent claudication.

A Phase I study was conducted using Ad2/HIF-1a/VP16 in patients with Critical Limb Ischemia and preliminary safety and potential bioactivity were demonstrated. Regulatory authorities in both the United States and Europe have reviewed this protocol and authorized Genzyme to proceed with enrollment.

If you are interested in participating, please call (212) 241-8902 or visit www.walkstudy.com.

Cardiovascular Research At Mount Sinai

The Zena and Michael A. Wiener Cardiovascular Institute and the Marie-Josée and Henry R. Kravis Center for Cardiovascular Health at The Mount Sinai Medical Center are preeminent resources for the study and treatment of heart and blood vessel diseases. Committed to finding new and improved methods of diagnosis, treatment and prevention, they comprise a multidisciplinary effort that brings together the extraordinary expertise of Mount Sinai School of Medicine and The Mount Sinai Hospital in cardiovascular medicine, cardiovascular surgery, medical education, research and community service, with state-of-the-art facilities for patient care, advanced laboratories for scientific research and leading programs for postgraduate education of clinician-scientists.

Mount Sinai School of Medicine

Located in Manhattan, Mount Sinai School of Medicine is internationally recognized for ground-breaking clinical and basic-science research, and innovative approaches to medical education. Through the Mount Sinai Graduate School of Biological Sciences, Mount Sinai trains biomedical researchers with an emphasis on the rapid translation of discoveries of basic research into new techniques for fighting disease. One indication of Mount Sinai’s leadership in scientific investigation is its receipt during fiscal year 2004 of $153.2 million. Mount Sinai now ranks 25th among the nation’s medical schools in receipt of research support from NIH. Mount Sinai School of Medicine also is known for unique educational programs such as the Humanities in Medicine program, which creates opportunities for liberal arts students to pursue medical school, and instructional innovations like The Morchand Center, the nation’s largest program teaching students and physicians with "standardized patients" to become not only highly skilled, but compassionate caregivers. Long dedicated to improving its community, the School extends its boundaries to work with East Harlem and surrounding communities to provide access to health care and educational programs to at risk populations.

| EurekAlert!
Further information:
http://www.mssm.edu
http://www.walkstudy.com

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>