Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HMRI Researcher Lights a Path to Understanding Brain Diseases

03.02.2006


Neurologist Mike Harrington of Pasadena, California’s Huntington Medical Research Institutes argues that soon we may be able to detect brain disease before symptoms even begin. The secret is in the cerebrospinal fluid, the clear liquid that cushions our brain and spinal cord.



As guest editor for the January 2006 issue of the respected medical journal Disease Markers (Volume 22, Issues 1-2), published by IOS Press, which was themed to the study of neural markers, Harrington edited the issue and co-authored three of the articles himself. He worked with HMRI biochemist Alfred Fonteh and several other scientists.

"Changes in lipids (e.g. cholesterol) and proteins in our cerebrospinal fluid may be linked to various brain conditions," Harrington says. "Conditions could include any change in normal brain, such as in development, or in diseases such as migraine, Parkinson’s Disease, schizophrenia, Alzheimer’s Disease, depression, multiple sclerosis and some forms of stroke.


A marker is a molecule in the body that’s involved in a disease, for example in the metabolism of a cancer cell. The marker points to a disease like a glove dropped by a cat burglar.

"We suspect that a problem in processing cholesterol in the brain may be at the root of Alzheimer’s disease," Harrington adds. (A surprise to most people, the brain contains 25 percent of the body’s cholesterol.) Studying the cholesterol in the brain may help provide an earlier diagnosis.

Harrington is known for his discovery of a marker for mad cow disease which advanced the worldwide study of the brain-wasting condition. His current research into migraine markers at HMRI is entering its fourth year of funding from the National Institutes of Health in Washington.

Harrington’s first article in the journal was a review of 131 articles written by scientists who have studied disease markers in spinal fluid. In the past 27 years, there’s been a 50-fold increase in the number of proteins identified in the cerebrospinal fluid – now a total of about 700. However, Harrington says, "The task ahead is enormous. There may be hundreds of thousands of molecules or their fragments that could serve as disease markers if we knew what they were and what they do in the spinal fluid."

To get where they need to be in their knowledge of proteins, Harrington calls on clinicians who see patients and researchers who mostly study animals to share their knowledge.

"Currently there’s a disagreement between the two groups over what constitutes a breach of the blood-brain barrier," Harrington says. "Clinicians believe that the barrier is compromised when a few stray molecules are present. Research physiologists have shown for 15 years that’s incorrect."

"We see a mismatch between the two disciplines," Harrington says. "Their separate stores of data, if combined, could provide significant insights into a variety of brain disorders."

Harrington’s second journal article discussed myriad ways to identify molecules in the cerebrospinal fluid (CSF). Lipidomics is the study of interacting groups of lipids or greasy molecules that comprise cell walls and brain structure. Proteomics studies groups of proteins. According to Harrington, "Both will enhance existing knowledge of brain disease."

The third article edited by Harrington discussed just one of the 700 known protein molecules, known as PGDS (prostaglandin D synthase). PGDS can adopt many forms and even break into pieces, any one of which could become a disease marker. In one study of 98 people with brain disorders, PGDS molecules showed wide variations in their shape and concentrations. Exactly why the changes occurred is not yet known.

Harrington stresses that study of disease markers requires not just powerful tools to detect the protein molecules in the CSF fluid. "It’s also important to understand the way the CSF works," he noted.

"The CSF is essentially a circulation system that, among several functions, helps take waste matter away from the brain," Harrington says. "It is refreshed up to five times a day, changing constantly. If cancer cells are growing in the brain, or other bad things are going on with the cell components, these could be markers that would be present in the CSF. Their position, even the time of day they are collected, could vary their meaning."

"There’s a lot to be learned correlating brain disease with molecular changes in CSF. These journal articles are about the state of the art in the search for disease markers."

"It should not be beyond our ability to recognize pre-symptom Alzheimer’s disease," Harrington says. "You’re losing brain tissue. We should be able to see this."

Chuck Champlin | alfa
Further information:
http://www.iospress.nl

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>