Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HMRI Researcher Lights a Path to Understanding Brain Diseases

03.02.2006


Neurologist Mike Harrington of Pasadena, California’s Huntington Medical Research Institutes argues that soon we may be able to detect brain disease before symptoms even begin. The secret is in the cerebrospinal fluid, the clear liquid that cushions our brain and spinal cord.



As guest editor for the January 2006 issue of the respected medical journal Disease Markers (Volume 22, Issues 1-2), published by IOS Press, which was themed to the study of neural markers, Harrington edited the issue and co-authored three of the articles himself. He worked with HMRI biochemist Alfred Fonteh and several other scientists.

"Changes in lipids (e.g. cholesterol) and proteins in our cerebrospinal fluid may be linked to various brain conditions," Harrington says. "Conditions could include any change in normal brain, such as in development, or in diseases such as migraine, Parkinson’s Disease, schizophrenia, Alzheimer’s Disease, depression, multiple sclerosis and some forms of stroke.


A marker is a molecule in the body that’s involved in a disease, for example in the metabolism of a cancer cell. The marker points to a disease like a glove dropped by a cat burglar.

"We suspect that a problem in processing cholesterol in the brain may be at the root of Alzheimer’s disease," Harrington adds. (A surprise to most people, the brain contains 25 percent of the body’s cholesterol.) Studying the cholesterol in the brain may help provide an earlier diagnosis.

Harrington is known for his discovery of a marker for mad cow disease which advanced the worldwide study of the brain-wasting condition. His current research into migraine markers at HMRI is entering its fourth year of funding from the National Institutes of Health in Washington.

Harrington’s first article in the journal was a review of 131 articles written by scientists who have studied disease markers in spinal fluid. In the past 27 years, there’s been a 50-fold increase in the number of proteins identified in the cerebrospinal fluid – now a total of about 700. However, Harrington says, "The task ahead is enormous. There may be hundreds of thousands of molecules or their fragments that could serve as disease markers if we knew what they were and what they do in the spinal fluid."

To get where they need to be in their knowledge of proteins, Harrington calls on clinicians who see patients and researchers who mostly study animals to share their knowledge.

"Currently there’s a disagreement between the two groups over what constitutes a breach of the blood-brain barrier," Harrington says. "Clinicians believe that the barrier is compromised when a few stray molecules are present. Research physiologists have shown for 15 years that’s incorrect."

"We see a mismatch between the two disciplines," Harrington says. "Their separate stores of data, if combined, could provide significant insights into a variety of brain disorders."

Harrington’s second journal article discussed myriad ways to identify molecules in the cerebrospinal fluid (CSF). Lipidomics is the study of interacting groups of lipids or greasy molecules that comprise cell walls and brain structure. Proteomics studies groups of proteins. According to Harrington, "Both will enhance existing knowledge of brain disease."

The third article edited by Harrington discussed just one of the 700 known protein molecules, known as PGDS (prostaglandin D synthase). PGDS can adopt many forms and even break into pieces, any one of which could become a disease marker. In one study of 98 people with brain disorders, PGDS molecules showed wide variations in their shape and concentrations. Exactly why the changes occurred is not yet known.

Harrington stresses that study of disease markers requires not just powerful tools to detect the protein molecules in the CSF fluid. "It’s also important to understand the way the CSF works," he noted.

"The CSF is essentially a circulation system that, among several functions, helps take waste matter away from the brain," Harrington says. "It is refreshed up to five times a day, changing constantly. If cancer cells are growing in the brain, or other bad things are going on with the cell components, these could be markers that would be present in the CSF. Their position, even the time of day they are collected, could vary their meaning."

"There’s a lot to be learned correlating brain disease with molecular changes in CSF. These journal articles are about the state of the art in the search for disease markers."

"It should not be beyond our ability to recognize pre-symptom Alzheimer’s disease," Harrington says. "You’re losing brain tissue. We should be able to see this."

Chuck Champlin | alfa
Further information:
http://www.iospress.nl

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>