Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Who’s the liar? Brain MRI stands up to polygraph test

01.02.2006


Traditional polygraph tests to determine whether someone is lying may take a back seat to functional magnetic resonance imaging (fMRI), according to a study appearing in the February issue of Radiology. Researchers from Temple University Hospital in Philadelphia used fMRI to show how specific areas of the brain light up when a person tells a lie.



"We have detected areas of the brain activated by deception and truth-telling by using a method that is verifiable against the current gold standard method of lie detection--the conventional polygraph," said lead author Feroze B. Mohamed, Ph.D., Associate Professor of Radiology at Temple.

Dr. Mohamed explained how the standard polygraph test has failed to produce consistently reliable results, largely because it relies on outward manifestations of certain emotions that people feel when lying. These manifestations, including increased perspiration, changing body positions and subtle facial expressions, while natural, can be suppressed by a large enough number of people that the accuracy and consistency of the polygraph results are compromised.


"Since brain activation is arguably less susceptible to being controlled by an individual, our research will hopefully eliminate the shortcomings of the conventional polygraph test and produce a new method of objective lie detection that can be used reliably in a courtroom or other setting," Dr. Mohamed said.

Dr. Mohamed and colleagues recruited 11 healthy subjects for the study. A mock shooting was staged, in which blank bullets were fired in a testing room. Five volunteers were asked to tell the truth when asked a series of questions about their involvement, and six were asked to deliberately lie. Each volunteer was examined with fMRI to observe brain activation while they answered questions either truthfully or deceptively. They also underwent a conventional polygraph test, where respiration, cardiovascular activity and perspiration responses were monitored. The same questions were asked in both examinations, and results were compared among the groups.

"With fMRI, there were consistently unique areas of the brain, and more of them, that were activated during the deceptive process than during truth-telling," Dr. Mohamed said. In producing a deceptive response, a person must inhibit or conceal the truth, which activates parts of the brain that are not required for truth-telling. Thus, fewer areas of the brain are active when telling the truth.

Fourteen areas of the brain were active during the deceptive process. In contrast, only seven areas lit up when subjects answered truthfully.

By studying the images, investigators were able to develop a better picture of the deception process in the brain. The increased activity in the frontal lobe, especially, indicated how the brain works to inhibit the truth and construct a lie.

Polygraph test results correlated well with actual events when subjects were asked to lie (92 percent accuracy); however, the results were not as conclusive when subjects were asked to tell the truth (70 percent accuracy).

The largest implications for a credible method of lie detection are in the field of crime investigation and prevention, and in the judicial determination of the guilt or innocence of accused individuals. Since the polygraph has not been embraced as a fully credible means of lie detection, the authors hope to provide a more accurate means of determining whether or not someone is telling the truth.

"A more consistent and verifiable method of lie detection could lead to changes in this particular realm of the legal system down the road," Dr. Mohamed said.

Heather Babiar | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>