Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cancer risk takes shape


About half of all patients with hereditary breast or ovarian cancer have mutations in a gene called BRCA1. Now the first images of the protein the gene encodes, BRCA1, are helping researchers work out how the mutations cause human disease.

The pictures reveal fine detail of how BRCA1 interacts with other proteins. Such information should help researchers work out how BRCA1 prevents cells becoming cancerous. They suspect that it is involved in DNA repair, controlling cell division and regulating gene activity.

Understanding BRCA1 should also make it easier to design genetic screening programmes to identify individuals at risk and catch cancer early. This is "very important to long-term survival," says Mark Glover of the University of Alberta in Edmonton, Canada, leader of one of the teams that have solved parts of BRCA1’s structure.

BRCA1 is a big protein — three times the size of haemoglobin, for example. Its chain of 1,863 amino acid links folds into a complex three-dimensional structure. Like a molecular Swiss Army knife, different parts are designed for different jobs.

Most of the mutations associated with breast and ovarian cancers beset the two regions composed of amino acids at the chain ends now under scrutiny. These areas vary least between different species, showing that their function is important enough for natural selection to stamp out slip-ups that would lead to variation.

The ends are probably the most important parts of the molecule, says Richard Baer, a cancer researcher at Columbia University in New York. "They won’t be the whole story, but they’re a big part of the story," he says.

Marked for death

One end of BRCA1 — the ’N’ terminus — bonds to another protein. The two form a catalyst that joins a small molecule called ubiquitin to other proteins. Ubiquitin tags proteins for destruction — an important stage in the body’s defence against cancer.

This much was already known. Rachel Klevit, of the University of Washington in Seattle, and colleagues have now visualized the interface between BRCA1 and its catalytic collaborator using nuclear magnetic resonance spectroscopy.

Klevit’s team was surprised to find that the collaborator joins to a different part of BRCA1 than they had suspected. The structure shows that mutations can disrupt either this junction or the ubiquitin-attachment machinery.

A full understanding of the N-terminal region’s workings might allow mutant BRCA1 proteins to be repaired, using small molecules to enhance or disrupt the protein machine, says Klevit. Unfortunately the many proteins that interact with BRCA1 make this a daunting task.

"We can do these sorts of things on the chalkboard, but until we’re clear on the multiple functions of all these different proteins it’s going to be difficult," says Klevit.

Pack up

Glover’s group focused on the other end of the molecule, the ’C’ terminus. Here, around 100 amino acids form structures known as BRCT repeats. These often feature in proteins that repair DNA — a vital part of tumour suppression.

X-ray crystallography reveals that the two BRCT repeats in BRCA1 "pack in a very intimate manner", says Glover. Mutations that alter the repeats disrupt their packing and unravel the protein. The loss of the last 11 amino acids at the protein’s C terminus is associated with aggressive, early-onset breast cancer.

The structures Klevit’s and Glover’s groups reveal are common to a range of proteins, but between them lies a large stretch of terra incognita, "that doesn’t look like any other protein", says Klevit. These amino acids — more than 1,500 of them — must do something, she says: "Nature’s not wasteful of its resources."

Structure of a BRCA1–BARD1 heterodimeric RING–RING complex

Nature Structural Biology 8, 833-837 (October 2001)

Crystal structure of the BRCT repeat region from the breast cancer-associated protein BRCA1

Nature Structural Biology 8, 838-842 (October 2001)

JOHN WHITFIELD | Nature News Service
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>