Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer risk takes shape

16.10.2001


About half of all patients with hereditary breast or ovarian cancer have mutations in a gene called BRCA1. Now the first images of the protein the gene encodes, BRCA1, are helping researchers work out how the mutations cause human disease.





The pictures reveal fine detail of how BRCA1 interacts with other proteins. Such information should help researchers work out how BRCA1 prevents cells becoming cancerous. They suspect that it is involved in DNA repair, controlling cell division and regulating gene activity.

Understanding BRCA1 should also make it easier to design genetic screening programmes to identify individuals at risk and catch cancer early. This is "very important to long-term survival," says Mark Glover of the University of Alberta in Edmonton, Canada, leader of one of the teams that have solved parts of BRCA1’s structure.


BRCA1 is a big protein — three times the size of haemoglobin, for example. Its chain of 1,863 amino acid links folds into a complex three-dimensional structure. Like a molecular Swiss Army knife, different parts are designed for different jobs.

Most of the mutations associated with breast and ovarian cancers beset the two regions composed of amino acids at the chain ends now under scrutiny. These areas vary least between different species, showing that their function is important enough for natural selection to stamp out slip-ups that would lead to variation.

The ends are probably the most important parts of the molecule, says Richard Baer, a cancer researcher at Columbia University in New York. "They won’t be the whole story, but they’re a big part of the story," he says.

Marked for death

One end of BRCA1 — the ’N’ terminus — bonds to another protein. The two form a catalyst that joins a small molecule called ubiquitin to other proteins. Ubiquitin tags proteins for destruction — an important stage in the body’s defence against cancer.

This much was already known. Rachel Klevit, of the University of Washington in Seattle, and colleagues have now visualized the interface between BRCA1 and its catalytic collaborator using nuclear magnetic resonance spectroscopy.

Klevit’s team was surprised to find that the collaborator joins to a different part of BRCA1 than they had suspected. The structure shows that mutations can disrupt either this junction or the ubiquitin-attachment machinery.

A full understanding of the N-terminal region’s workings might allow mutant BRCA1 proteins to be repaired, using small molecules to enhance or disrupt the protein machine, says Klevit. Unfortunately the many proteins that interact with BRCA1 make this a daunting task.

"We can do these sorts of things on the chalkboard, but until we’re clear on the multiple functions of all these different proteins it’s going to be difficult," says Klevit.

Pack up

Glover’s group focused on the other end of the molecule, the ’C’ terminus. Here, around 100 amino acids form structures known as BRCT repeats. These often feature in proteins that repair DNA — a vital part of tumour suppression.

X-ray crystallography reveals that the two BRCT repeats in BRCA1 "pack in a very intimate manner", says Glover. Mutations that alter the repeats disrupt their packing and unravel the protein. The loss of the last 11 amino acids at the protein’s C terminus is associated with aggressive, early-onset breast cancer.

The structures Klevit’s and Glover’s groups reveal are common to a range of proteins, but between them lies a large stretch of terra incognita, "that doesn’t look like any other protein", says Klevit. These amino acids — more than 1,500 of them — must do something, she says: "Nature’s not wasteful of its resources."


letters
Structure of a BRCA1–BARD1 heterodimeric RING–RING complex

PETER S. BRZOVIC, PONNI RAJAGOPAL, DAVID W. HOYT, MARY-CLAIRE KING & RACHEL E. KLEVIT
Nature Structural Biology 8, 833-837 (October 2001)

letters
Crystal structure of the BRCT repeat region from the breast cancer-associated protein BRCA1

R. SCOTT WILLIAMS, RUTH GREEN & J.N. MARK GLOVER
Nature Structural Biology 8, 838-842 (October 2001)


JOHN WHITFIELD | Nature News Service
Further information:
http://www.nature.com/cancer/hotp/200110/4.html
http://www.nature.com/cancer/

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>