Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chemical warfare agent detection technology used to treat lung disease


A new technique based on the same technology used to detect chemical warfare agents and explosives is being employed by scientists at The University of Manchester to treat hospital patients with lung disease.

Dr Paul Thomas and a team of researchers are using a sensor, commonly used to detect explosives at airports, to develop a new way of diagnosing lung disease.

The microDMx sensor, developed by Sionex Corporation, is being used to develop a new technique which is able to detect ‘unhealthy’ molecules present in the breath of a patient.

The technology is currently being tested at Wythenshawe Hospital’s North West Lung Research Centre (NWLRC). The aim is to produce a device which will enable doctors to monitor patients with lung or respiratory conditions by simply asking them to breathe into it.

The microDMx sensor is based on a Differential Mobility Spectrometer (DMS) and is a significant advance over the current Ion Mobility Spectrometer (IMS) systems which are currently deployed in airports to detect minute traces of explosives or drugs. The microDMx sensor is able to identify molecules that may be the cause of lung diseases such as cancer, asthma and chronic obstructive pulmonary disease caused by smoking.

Dr Paul Thomas from the University’s School of Chemical Engineering and Analytical Science, who is leading the research, said: “Our vision is that one day we will be able to detect a previously undetectable tumour metabolising inside a human lung simply by asking a patient to breathe into a device like this. For now our aim to use the microDMx sensor to develop better instruments which will improve patient care and treatment.

“The potential is such that we will not only be able to provide more accurate diagnosis, but we will also be able to tailor treatments to the individual. For instance, if a patient is taking steroids for asthma, we would be able determine whether they were being given the right amount of steroids from the molecules in their breath which relate to the severity of the inflammation in their lungs.”

NWLRC Consultant Dr Dave Singh, said: "This research could make dramatic improvements to the detection of lung diseases. We are really excited about the future possibilities for diagnosing diseases, and monitoring the response to treatment.”

The microDMx sensor can be used to detect and analyse a broad spectrum of molecules associated with different conditions with extreme sensitivity. It can also be configured to block out molecules produced by common ailments such as sore throats or chesty coughs which may interfere with the accuracy of data.

“What is unique about this sensor, and the use of the microDMx technology, is the fact that it can be configured to not just analyse one disease or condition, but it has the potential to be used to analyse a broad spectrum of conditions from asthma, to cancer and metabolic disorders such as diabetes,” says Dr Thomas.

Dr Thomas’ research will form part of a new National Initiative in Ion Mobility Spectrometry (NIIMS), which aims to explore the use of IMS measurement within the pharmaceutical and biomedical fields. Alongside Professor Colin Creaser from Nottingham Trent University he will lead a consortium of experts and industrial partners, who will be evaluating DMS and IMS potential in areas such as high-speed separations of complex mixtures and structural characterisation of pharmaceuticals and biomolecules.

Pharmaceutical giants GlaxoSmithKline and AstraZeneca have already pledged their support for the NIIMS initiative, along with Micromass UK, committing £530K.

Simon Hunter | alfa
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>