Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avian influenza virus in mammals spreads beyond the site of infection to other organ systems

16.01.2006


Researchers at Erasmus Medical Center have demonstrated systemic spread of avian influenza virus in cats infected by respiratory, digestive, and cat-to-cat contact. The paper by Rimmelzwaan et al., "Influenza A virus (H5N1) infection in cats causes systemic disease with potential novel routes of virus spread within and between hosts," appears in the January issue of The American Journal of Pathology and is accompanied by a commentary.



Avian influenza (H5N1) is of great concern because of the current outbreaks in Asia and the potential for pandemic spread. This virus is highly contagious in birds and spreads easily due to the agricultural and migratory nature of the bird species infected, including poultry, water fowl, and other migratory species (See commentary by Brown for more information). While spread of avian influenza from bird to man is known to occur, as first reported during the 1997 Hong Kong outbreak, human-to-human spread is extremely rare. Thus, the disease events that take place during mammal-to-mammal spread are not well characterized.

To assess the spread of H5N1 influenza virus in mammalian hosts, Rimmelzwaan et al. examined cats infected via the respiratory tract, via the digestive tract (by feeding on infected chicks), or by close contact with respiratory-infected cats. The researchers, led by Dr. Thijs Kuiken, then examined mucous membranes (throat, nasal, and rectal swabs) and organ systems (respiratory, digestive, nervous, cardiovascular, urinary, lymphoid, and endocrine) for the presence of virus and viral protein.


As expected, all cats were infected with H5N1 virus and exhibited clinical signs of disease (fever, lethargy, labored breathing, etc.), and virus was detected in throat, nasal, and rectal swabs, regardless of the original site of infection. Most interesting, virus spread throughout the organ systems with virus being found in respiratory and digestive tracts, liver, kidney, heart, brain, and lymph nodes. Furthermore, examination of infected tissues revealed cellular damage at sites containing viral proteins, providing an explanation for the increased severity of disease in humans.

These data underscore the potential for influenza virus to spread not only from the respiratory tract but also from the digestive and urinary tracts, greatly increasing the possible routes of mammalian transmission. Systemic disease has long been known to occur in birds, with the fecal-oral route of transmission being most important. However, this is the first demonstration of systemic replication in cats, providing a cautionary tale for humans regarding how influenza is spread and how the disease presents itself.

Rimmelzwaan and colleagues caution that because of the systemic nature of avian influenza, "H5N1 virus infection needs to be included in the differential diagnosis of a broader range of clinical presentations than is currently done." In addition better understanding of the mechanisms of spread, including possible fecal-oral route in humans, "may limit the risk of H5N1 virus developing into a pandemic influenza virus."

Audra Cox | EurekAlert!
Further information:
http://www.erasmusmc.nl
http://www.asip.org

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
29.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>