Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral ’fitness’ explains different resistance patterns to aids drugs

11.01.2006


Some HIV medications lead to the development of drug-resistant HIV when patients take as few as two percent of their medications. For other medications, resistance occurs only when patients take most of their pills. These differences appear to be explained by the different levels of viral "fitness" of the drug-resistant HIV, say AIDS researchers in a new study.



The research, led by David Bangsberg, MD, MPH, an AIDS specialist at the University of California, San Francisco, is reported in the January 9 issue of the journal AIDS.

Viral "fitness" refers to the inherent ability of a virus to replicate and cause disease. Incomplete pill-taking by patients causes HIV to mutate and become resistant to the effects of the medications, while the medications that were consumed, in turn, cause the newly resistant virus to become less fit.


The type of medication also factors in. Differences in viral fitness of mutated resistant virus occur between different classes of antiretroviral drugs, said Bangsberg, who is an associate professor of medicine at UCSF and director of the UCSF Epidemiology and Prevention Interventions Center at San Francisco General Hospital Medical Center.

When patients succeed in completely suppressing HIV, which requires that patients take all or almost all of their medications as directed, resistant strains either do not occur or are suppressed, he added.

Explaining the study results, Bangsberg said, "A non-nucleoside reverse transcriptase inhibitor (NNRTI), for example, can be taken one time by a pregnant woman to prevent mother-to-child transmission, and NNRTI-resistant HIV virus can develop. Yet patients taking unboosted protease inhibitors (PI) do not experience the peak risk of PI-resistant HIV developing unless they are taking most of their PIs but fall just short of full viral suppression."

The researchers found that NNRTI-resistant virus has an advantage over sensitive virus even at very low levels of adherence. This happens because only a single mutation is required to create high-level NNRTI resistance and these mutations have little impact on the virus’s ability to replicate. PI-resistant virus, in contrast, requires multiple mutations, each of which significantly weakens the ability of the virus to replicate. These PI-resistant viruses only emerge, therefore, when challenged with high concentrations of drug.

Overall, study findings showed that NNRTI resistance was found less often than PI resistance among patients who took the pills as directed.

"We believe that when new drug classes are developed, more attention should be given in defining how virologic fitness determines how different patterns of taking medications may lead to resistance" said Steven Deeks, MD, associate professor of medicine at UCSF’s Positive Health Program at SFGHMC and senior author on the study.

Both NNRTIs and non-boosted protease inhibitors are potent antiretroviral drugs (ARVs) with demonstrated effectiveness in suppressing the HIV virus when taken in combination with other ARVs at high levels of pill-taking as directed. The standard combination therapy usually includes either one NNRTI or protease inhibitor (non-boosted or boosted with a small amount of another potent PI) and two different antiretrovirals from the nucleoside reverse transcriptase inhibitor class.

Jeff Sheehy | EurekAlert!
Further information:
http://www.ari.ucsf.edu

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>