Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Variation in bitter-taste receptor gene increases risk for alcoholism


A team of researchers, led by investigators at Washington University School of Medicine in St. Louis, has found that a gene variant for a bitter-taste receptor on the tongue is associated with an increased risk for alcohol dependence. The research team studied DNA samples from 262 families, all of which have at least three alcoholic individuals. The families are participating in a national study called the Collaborative Study of the Genetics of Alcoholism (COGA). COGA investigators report in the January issue of the American Journal of Human Genetics on the variation in a taste receptor gene on chromosome 7 called TAS2R16.

"In earlier work, we had identified chromosome 7 as a region where there was likely to be a gene influencing alcoholism risk," says principal investigator Alison M. Goate, D. Phil., the Samuel and Mae S. Ludwig Professor of Genetics in Psychiatry at Washington University. "There’s a cluster of bitter-taste receptor genes on that chromosome, and there have been several papers suggesting drinking behaviors might be influenced by variations within taste receptors. So we decided to look closely at these taste receptor genes."

Because taste receptors tend to vary a lot in the general population, Goate and colleagues had the opportunity to look at a large number of differences in genetic sequences and determine whether certain sequences might influence risk. In this study, they concentrated on TAS2R16, which helps regulate the response to bitter tastes.

They found a single base variation in the TAS2R16 receptor gene that seemed to put people at an increased risk for alcoholism. In cell culture experiments, Goate found that the variant receptor produced by this gene was less responsive to bitter compounds.

"The more common variant is more sensitive to bitter tastes, and people with that variant had a lower risk of being alcohol dependent," Goate says.

Goate hopes to replicate these findings in human taste tests, to verify that individuals with this variant also tend to be less sensitive to bitter tastes as suggested by the cell culture experiments.

As part of this investigation, Goate’s team took advantage of available genome sequence databases to speed work in identifying and studying genes on chromosome 7. She says data from the Human Genome Project allowed the investigators to more quickly recognize individual variations in genes, called polymorphisms, that can influence how a gene product or protein functions.

As part of this study, Goate’s team sequenced the TAS2R16 receptor gene in a number of individuals, but they didn’t identify genetic variants they hadn’t found already in the public databases.

The variant that increases risk of alcohol dependence was common in African Americans -- where about 45 percent of those studied carried this variation in the TAS2R16 receptor gene -- but rare in Caucasians -- where only 0.6 percent had this variation. Although the increased incidence of the variant means a larger percentage of African Americans are at risk because of this genetic factor, the variant in the TAS2R16 receptor also significantly increased risk in those Caucasians who carried the genetic variation.

The fact that this particular genetic variation is more common in African Americans does not necessarily mean African Americans will have a higher incidence of alcoholism. The difference in the TAS2R16 gene is only one of several genetic and environmental factors involved in risk for alcoholism, according to Goate.

"I don’t think our result has any implications for the levels of alcoholism within different populations," Goate says. "We know that this polymorphism is more common in African Americans than in Caucasians, but the frequency of alcoholism still can be similar between the two groups because many genes and environmental factors influence risk."

Jim Dryden | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>