Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variation in bitter-taste receptor gene increases risk for alcoholism

10.01.2006


A team of researchers, led by investigators at Washington University School of Medicine in St. Louis, has found that a gene variant for a bitter-taste receptor on the tongue is associated with an increased risk for alcohol dependence. The research team studied DNA samples from 262 families, all of which have at least three alcoholic individuals. The families are participating in a national study called the Collaborative Study of the Genetics of Alcoholism (COGA). COGA investigators report in the January issue of the American Journal of Human Genetics on the variation in a taste receptor gene on chromosome 7 called TAS2R16.



"In earlier work, we had identified chromosome 7 as a region where there was likely to be a gene influencing alcoholism risk," says principal investigator Alison M. Goate, D. Phil., the Samuel and Mae S. Ludwig Professor of Genetics in Psychiatry at Washington University. "There’s a cluster of bitter-taste receptor genes on that chromosome, and there have been several papers suggesting drinking behaviors might be influenced by variations within taste receptors. So we decided to look closely at these taste receptor genes."

Because taste receptors tend to vary a lot in the general population, Goate and colleagues had the opportunity to look at a large number of differences in genetic sequences and determine whether certain sequences might influence risk. In this study, they concentrated on TAS2R16, which helps regulate the response to bitter tastes.


They found a single base variation in the TAS2R16 receptor gene that seemed to put people at an increased risk for alcoholism. In cell culture experiments, Goate found that the variant receptor produced by this gene was less responsive to bitter compounds.

"The more common variant is more sensitive to bitter tastes, and people with that variant had a lower risk of being alcohol dependent," Goate says.

Goate hopes to replicate these findings in human taste tests, to verify that individuals with this variant also tend to be less sensitive to bitter tastes as suggested by the cell culture experiments.

As part of this investigation, Goate’s team took advantage of available genome sequence databases to speed work in identifying and studying genes on chromosome 7. She says data from the Human Genome Project allowed the investigators to more quickly recognize individual variations in genes, called polymorphisms, that can influence how a gene product or protein functions.

As part of this study, Goate’s team sequenced the TAS2R16 receptor gene in a number of individuals, but they didn’t identify genetic variants they hadn’t found already in the public databases.

The variant that increases risk of alcohol dependence was common in African Americans -- where about 45 percent of those studied carried this variation in the TAS2R16 receptor gene -- but rare in Caucasians -- where only 0.6 percent had this variation. Although the increased incidence of the variant means a larger percentage of African Americans are at risk because of this genetic factor, the variant in the TAS2R16 receptor also significantly increased risk in those Caucasians who carried the genetic variation.

The fact that this particular genetic variation is more common in African Americans does not necessarily mean African Americans will have a higher incidence of alcoholism. The difference in the TAS2R16 gene is only one of several genetic and environmental factors involved in risk for alcoholism, according to Goate.

"I don’t think our result has any implications for the levels of alcoholism within different populations," Goate says. "We know that this polymorphism is more common in African Americans than in Caucasians, but the frequency of alcoholism still can be similar between the two groups because many genes and environmental factors influence risk."

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>