Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blood flow in brain takes a twist, affecting views of Alzheimer’s


New findings that long-overlooked brain cells play an important role in regulating blood flow in the brain call into question one of the basic assumptions underlying today’s most sophisticated brain imaging techniques and could open a new frontier when it comes to understanding Alzheimer’s disease.

In a paper to appear in the February issue of Nature Neuroscience and now available on-line, scientists at the University of Rochester Medical Center demonstrate that star-shaped brain cells known as astrocytes play a direct role in controlling blood flow in the brain, a crucial process that allows parts of the brain to burst into activity when needed. The finding is intriguing for a disease like Alzheimer’s, which has long been considered a disease of brain cells known as neurons, and certainly not astrocytes.

"For many years, astrocytes have been considered mainly as housekeeping cells that help nourish and maintain a healthy environment for neurons. But it’s turning out that astrocytes may play a central role in many human diseases," said neuroscientist Maiken Nedergaard, M.D., Ph.D., who has produced a string of publications fingering astrocytes in diseases like epilepsy and spinal cord injury.

"In a disease like Alzheimer’s, for instance, perhaps it’s the astrocytes themselves that are damaged first," she said. "It may be that for whatever reason, astrocytes are not doing their job properly, and then blood flow decreases. This could lead to the death of the neurons, which would starve from a lack of nutrients, since the neurons depend on the astrocytes for their survival."

The new research focuses on a process critical to the health of people with Alzheimer’s and everyone else: the moment-to-moment allocation of vital resources like oxygen that goes on within our bodies. It’s a supply problem familiar to anyone who worried over the availability of gasoline immediately after hurricane Katrina. In our bodies the process is particularly crucial in the brain, which is the body’s most voracious guzzler of "fuel," with a constant need for oxygen. When part of the brain becomes more active, more blood is shunted to that region to bring extra nutrients like oxygen, making the increased activity possible.

Most scientists have assumed that the more blood that flows to a particular part of the brain, the more activity on the part of neurons, the nerve cells that send electrical signals that are widely considered to be "brain activity." The assumption that more blood flow equals more active neurons forms the basis for interpretation of sophisticated brain imaging techniques such as PET scans and functional MRI scans.

Now the group led by Nedergaard, professor in the Department of Neurosurgery and a member of the Center for Aging and Developmental Biology, and post-doctoral associate Takahiro Takano, Ph.D., the first author of the paper, has thrown doubt on the assumption by showing that astrocytes are important players in the process too. Studies by the team in mice show that signaling from astrocytes causes arteries in the brain to expand, bringing about an increase in blood flow.

"When we measure blood flow," said Nedergaard, "it may be that we are not measuring the activity of neurons so much as that of astrocytes."

The idea creates a "chicken or egg" type question in patients with conditions like Alzheimer’s or traumatic brain injury where blood flow to parts of the brain plummets. In Alzheimer’s it’s known that neurons sicken and die over a period of years. To diagnose the disease, doctors often order a brain scan. When the test shows lessened blood flow, doctors assume that there must be less of a demand for blood, and so significant numbers of neurons in that brain region must have died. While that still may be true, Nedergaard said, the new results muddy the picture, calling into question any straightforward link between the health of neurons and blood flow.

Nedergaard said that while it is new to find that astrocytes can regulate blood flow, the finding shouldn’t be entirely surprising. She said that astrocytes physically touch both synapses – the spaces between neurons that are crucial to brain activity – and blood vessels. In fact, "footprints" of astrocytes are literally all over blood vessels in the brain: Portions of astrocytes known as "astrocytic endfeet" wrap around nearly all the blood vessels in the brain.

Previously a few scientists have looked at slices of brain tissue and come up with hints that astrocytes might regulate blood flow in brain tissue. The current research, funded by the National Institute of Neurological Disorders and Stroke, relies on a sophisticated laser system developed by Nedergaard to study the activity of astrocytes in living organisms. The team used a fluorescent dye to light up the blood vessels, then put a special form of the chemical calcium into astrocytes. They used one laser to activate the calcium, and another laser to monitor how astrocytes processed the chemical. They found that astrocytes caused blood vessels to dilate.

Tom Rickey | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>