Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood flow in brain takes a twist, affecting views of Alzheimer’s

09.01.2006


New findings that long-overlooked brain cells play an important role in regulating blood flow in the brain call into question one of the basic assumptions underlying today’s most sophisticated brain imaging techniques and could open a new frontier when it comes to understanding Alzheimer’s disease.



In a paper to appear in the February issue of Nature Neuroscience and now available on-line, scientists at the University of Rochester Medical Center demonstrate that star-shaped brain cells known as astrocytes play a direct role in controlling blood flow in the brain, a crucial process that allows parts of the brain to burst into activity when needed. The finding is intriguing for a disease like Alzheimer’s, which has long been considered a disease of brain cells known as neurons, and certainly not astrocytes.

"For many years, astrocytes have been considered mainly as housekeeping cells that help nourish and maintain a healthy environment for neurons. But it’s turning out that astrocytes may play a central role in many human diseases," said neuroscientist Maiken Nedergaard, M.D., Ph.D., who has produced a string of publications fingering astrocytes in diseases like epilepsy and spinal cord injury.


"In a disease like Alzheimer’s, for instance, perhaps it’s the astrocytes themselves that are damaged first," she said. "It may be that for whatever reason, astrocytes are not doing their job properly, and then blood flow decreases. This could lead to the death of the neurons, which would starve from a lack of nutrients, since the neurons depend on the astrocytes for their survival."

The new research focuses on a process critical to the health of people with Alzheimer’s and everyone else: the moment-to-moment allocation of vital resources like oxygen that goes on within our bodies. It’s a supply problem familiar to anyone who worried over the availability of gasoline immediately after hurricane Katrina. In our bodies the process is particularly crucial in the brain, which is the body’s most voracious guzzler of "fuel," with a constant need for oxygen. When part of the brain becomes more active, more blood is shunted to that region to bring extra nutrients like oxygen, making the increased activity possible.

Most scientists have assumed that the more blood that flows to a particular part of the brain, the more activity on the part of neurons, the nerve cells that send electrical signals that are widely considered to be "brain activity." The assumption that more blood flow equals more active neurons forms the basis for interpretation of sophisticated brain imaging techniques such as PET scans and functional MRI scans.

Now the group led by Nedergaard, professor in the Department of Neurosurgery and a member of the Center for Aging and Developmental Biology, and post-doctoral associate Takahiro Takano, Ph.D., the first author of the paper, has thrown doubt on the assumption by showing that astrocytes are important players in the process too. Studies by the team in mice show that signaling from astrocytes causes arteries in the brain to expand, bringing about an increase in blood flow.

"When we measure blood flow," said Nedergaard, "it may be that we are not measuring the activity of neurons so much as that of astrocytes."

The idea creates a "chicken or egg" type question in patients with conditions like Alzheimer’s or traumatic brain injury where blood flow to parts of the brain plummets. In Alzheimer’s it’s known that neurons sicken and die over a period of years. To diagnose the disease, doctors often order a brain scan. When the test shows lessened blood flow, doctors assume that there must be less of a demand for blood, and so significant numbers of neurons in that brain region must have died. While that still may be true, Nedergaard said, the new results muddy the picture, calling into question any straightforward link between the health of neurons and blood flow.

Nedergaard said that while it is new to find that astrocytes can regulate blood flow, the finding shouldn’t be entirely surprising. She said that astrocytes physically touch both synapses – the spaces between neurons that are crucial to brain activity – and blood vessels. In fact, "footprints" of astrocytes are literally all over blood vessels in the brain: Portions of astrocytes known as "astrocytic endfeet" wrap around nearly all the blood vessels in the brain.

Previously a few scientists have looked at slices of brain tissue and come up with hints that astrocytes might regulate blood flow in brain tissue. The current research, funded by the National Institute of Neurological Disorders and Stroke, relies on a sophisticated laser system developed by Nedergaard to study the activity of astrocytes in living organisms. The team used a fluorescent dye to light up the blood vessels, then put a special form of the chemical calcium into astrocytes. They used one laser to activate the calcium, and another laser to monitor how astrocytes processed the chemical. They found that astrocytes caused blood vessels to dilate.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>