Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding fatigue in chronic liver disease

09.01.2006


A study examines new pathways linking liver disease to changes in the central nervous system



Liver disease is often associated with "sickness behaviors," such as malaise, listlessness, anorexia, difficulty concentrating, and fatigue. In cholestatic liver diseases (where bile production is impaired) such as primary biliary cirrhosis, fatigue occurs in up to 86 percent of patients. Previous studies have suggested that these symptoms originate from changes to the central nervous system (CNS), but little is understood about how these changes occur or the pathways involved.

In a study led by Steven M. Kerfoot of the Immunology Research Group at the University of Calgary in Canada and published in the January 2006 issue of Hepatology, researchers speculated that cholestatic liver damage may be associated with an immune response affecting the central nervous system, specifically the brain, which could represent a novel and potentially important pathway.


Hepatology, the official journal of the American Association for the Study of Liver Diseases (AASLD), published by John Wiley & Sons, Inc. is available online via Wiley InterScience at http://www.interscience.wiley.com/journal/hepatology.

The study involved creating cholestasis in mice by tying off the bile duct. Cerebral endothelial cells (cells lining the blood vessels of the brain) were then isolated and examined to see if they were activated, as activated endothelium tends to interact with activated immune cells. In addition, researchers analyzed TNF-alpha (a messenger protein involved in inflammation) production by monocytes, a type of white blood cell, to determine if a peripheral immune response was present.

The results showed an increase in TNF-alpha production by monocytes and activated endothelial cells in the cholestatic mice versus the control mice. The authors suggest that cholestasis is also associated with a broad activation of other immune cells within the central nervous system that produce TNF-alpha. "Given the significant behavioral effects of TNF-alpha within the CNS (i.e. sickness behaviors), the production of TNF-alpha within the brains of cholestatic mice is likely to be important in the alterations in behavior, as well as in the changes in the neurotransmitter systems which sub-serve these behaviors within the brains of cholestatic mice and may have direct implications for these systems in cholestatic patients," the authors conclude.

In an accompanying editorial in the same issue, Alexander I. Aspinall and David H. Adams of the Institute for Biomedical Research at the University of Birmingham in England, note the difficulties in treating fatigue associated with liver disease and the lack of understanding of the mechanisms that cause it, adding that the University of Calgary study "provides a novel mechanism to link cholestasis, inflammation and sickness behavior and is potentially important in understanding this poorly characterized aspect of chronic cholestasis." They state that the fact that monocytes were found in similar locations to those seen in inflammatory brain disease supports the likelihood that they are linked to pathological effects. However, they note that there are still unresolved issues in understanding sickness behaviors and that it remains unknown whether the results from the animal study will translate to cholestasis in humans. One key message from the study is that a number of factors most likely affect the CNS leading to sickness behaviors.

"Identifying the mediators involved is important not only to complete our understanding of the pathogenesis of sickness behaviors but also to inform the development of appropriate therapeutic agents," the authors state, adding that the risks of anti-TNF-alpha therapy most likely outweigh the potential benefits. They conclude: "It is to be hoped that a better understanding of these processes may lead to the development of more effective and rational therapies for this disabling symptom of cholestatic liver disease."

David Greenberg | EurekAlert!
Further information:
http://www.wiley.com

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>