Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique points to safer, more efficient vaccination

30.12.2005


Researchers have demonstrated a technique that has the potential to reduce the toxicity of vaccines and to make smaller doses more effective, according to a study published in PLoS Pathogens.



Developing vaccines is fraught with challenges, particularly because many candidates carry a high risk of toxic side effects. For example, twenty percent of people immunized against smallpox will suffer side effects.

Wilfred Jefferies, a researcher at the University of British Columbia and senior author of the study, and his colleagues have shown that boosting the production of TAP, an immune system component, can make smaller doses of vaccines more effective. Smaller vaccine doses would mean reduced side effects and the capacity to immunize more people with less material. “As the approach we have discovered appears to augment immune responses for different pathogens and is not limited to the genetics of the host we vaccinate, this new approach could have far reaching benefits in the field of vaccines,” Jefferies said.


Vaccines capitalize on normal immune responses. Viral infections are naturally detected with the aid of special molecules called the major histocompatibility complex (MHC), which alert immune system cells to destroy infected cells. If the same virus infects again, the system is primed and ready to respond more quickly. Vaccines, which are created from disease-causing viruses (or their relatives), provide a harmless first exposure so that future infections are thwarted before they become lethal.

In this study, Jefferies and his colleagues vaccinated mice against the viral relatives of rabies and measles viruses and simultaneously induced the overproduction of one component already part of the immune system, called TAP, which enhances MHC activity. Subsequently, specific “destroyer” cells increased fourfold, compared with traditional vaccination. Since these cells help initiate immunity, the group recognized that they were an important piece of the puzzle, according to Jefferies. “The pathway works like a machine or factory where increasing the efficiency of one component part can lead to a massive increase in functional output,” he said.

Next, using varying doses, the team vaccinated mice against a relative of the smallpox virus. Mice immunized with just one-hundredth the standard dose and induced to overproduce TAP were still able to survive an otherwise lethal viral infection.

“We were surprised that over-expression of TAP would have such a great effect because it implies that it is in limiting amounts normally or is inefficient normally,” Jefferies said. “Combining viral antigens with a gene that is involved in their processing appears to be a solution to increasing the efficacy of vaccines in general.”

Paul Ocampo | alfa
Further information:
http://www.plospathogens.org
http://www.plos.org

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>