Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

File compression can expand mammography’s power

21.12.2005


When it comes to the information in a mammogram, Purdue scientists say less is more – and their findings could bring medical care to many far-flung communities.



A team of researchers, including Bradley J. Lucier, has found that digitized mammograms, the X-ray cross sections of breast tissue that doctors use to search for cancer, are actually interpreted more accurately by radiologists once they have been "compressed" using techniques similar to those used to lessen the memory demand of images in digital cameras. Though compression strips away much of the original data, it still leaves intact those features that physicians need most to diagnose cancer effectively. Perhaps equally important, digitization could bring mammography to many outlying communities via mobile equipment and dial-up Internet connections.

"Any technique that improves the performance of radiologists is helpful, but this also means that mammograms can be taken in remote places that are underserved by the medical community," said Lucier, who is a professor of mathematics and computer science in Purdue’s College of Science. "The mammograms can then be sent electronically to radiologists, who can read the digitized versions knowing they will do at least as well as the original mammograms."


The research paper will appear in today’s (Dec. 20) issue of Radiology, the journal of the Radiological Society of North America. Lucier developed the file-compression method used in the study, which was run at the Moffitt Cancer Center at the University of South Florida in Tampa.

Discerning the potential seeds of cancer within the chaff of extraneous detail present in a mammogram requires the expert eye of a radiologist, who must pick out salient features at many different scales within the image. Clues can be very small clusters of tiny calcium deposits, each less than one-hundredth of an inch in diameter. Clues also can range up through the edges of medium-sized objects – which could be benign cysts with smooth edges, for example, or cancerous tumors with rough edges – up to large-scale patterns in tissue fiber.

"The edges of tumors are where growth occurs, and they tell radiologists whether what they see is a tumor or not," Lucier said. "You have to keep all these features intact when you compress the image if it is to be useful."

Once a mammogram image has been converted into electronic form, it can contain more than 50 megabytes of data, which makes it prohibitively large for transmission by computer modem over a telephone line. Compounding the issue is that four such images are needed for a complete screening, and though it takes only a few minutes to obtain the X-ray pictures, getting a mammogram can be difficult. A 2001 FDA study showed that the number of mammography facilities has declined in most states, and the population of potential recipients of mammography services has increased. While the study suggests that difficulties obtaining mammograms are localized rather than widespread, Lucier said that telemedicine could potentially mitigate the problem.

"I began experimenting with file-compression algorithms to see if we could shrink files to the point where they could be sent over standard phone lines," he said. "Some communities do not have easy access to broadband Internet yet, and my colleagues and I wanted to work around that issue."

Lucier found that one well-tested algorithm – a short set of instructions that can be repeated many times – did the trick after a bit of tweaking. Though the basic mathematics has been around for more than a decade, he said, its finer points required some adjusting.

"I wanted the algorithm to make all the features important to radiologists degrade at the same rate – both the edges of large tumors and the smallest calcium deposits," Lucier said. "I tried several approaches and eventually got a balance that seemed reasonable, based on what radiologists tell me they want."

His methods have evidently paid off: On seven of nine measures of diagnostic accuracy, radiologists interpret the compressed images more accurately than they interpret the original images, even though the compressed images contain, on average, only 2 percent of the information in the originals.

"I want to emphasize that this study does not necessarily imply that compression always improves diagnosis," Lucier said. "It means that radiologists can spot and localize features as well or better than before. The technology filters out the noise, if you will. But so far, there is no question that these radiologists did diagnose better using the compressed images."

Lucier is optimistic that the technique might be applied to other forms of telemedicine as well, if certain modifications are made.

"There are many forms of medical diagnosis that require an image to be read by a specialist," he said. "If image compression is applied to other diagnostic situations, you won’t actually have to have that specialist on hand if you can get the equipment to the patient. But this is proof in principle that file compression, if done properly, can confer advantages to both patient and doctor."

This research was funded in part by the Office of Naval Research, whose Mathematical, Computer and Information Sciences Division supports research on motion and still-image analysis, processing and enhancement.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: Bradley J. Lucier, (612) 625-5532 or (765) 494-1979, lucier@math.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>