Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers propose model of neural circuit underlying working memory

21.12.2005


Novel computational neuroscience model offers new areas for experimentation



Our ability to understand speech or decide which fruit in the store is freshest depends on the brain’s dexterity in integrating information over time. The prefrontal cortex, where working memory resides, plays a critical role in helping us make these countless everyday decisions. A novel computational study by Brandeis researchers in this week’s issue of the Proceedings of the National Academy of Sciences proposes for the first time a neuronal model for the mechanisms underlying a time-related task in this complex decision-making process.

Essentially, the study shows that neurons in the prefrontal cortex fire with greater or lesser intensity to finely control, or inhibit behavior, based on a neuronal feedback signal, or circuit mechanism. Such integral feedback control is probably at work in many regulatory areas of the body, such as temperature control and feelings of satiety to prevent overeating, but this is the first time this mechanism has been suggested as a role of neuronal firing.


The findings provide a framework for understanding how neurons operate in a part of the brain that controls behavior and which is often compromised in people with mental health problems such as schizophrenia, a disease that can entail problems with short-term memory tasks and misperceptions about the immediate environment.

"This novel study gives us another computational tool with which to explore the incredibly complex mechanisms at work in working memory – an important portal to understanding many aspects of mental health and disease," said Miller.

Paul Miller, who authored the paper along with Xiao-Jing Wang, compared the neuronal integral feedback control mechanism, a concept common in engineering, to the way a home boiler works.

"When the boiler is on, the temperature of the room rises, increasing the rate of heat production from the boiler. Once the temperature of the room is sufficiently high, the thermostat switches off the boiler. This is feedback inhibition – a sufficiently high temperature switches off the boiler, the same way in our neuronal circuit that sufficiently high neuronal activity will switch off earlier firing neurons," explained Miller.

"While a perfectly insulated room would maintain the high temperature, most rooms have leaks, so over time, would cool down. An important area of investigation in neuroscience is how neurons can make their leak timescales long enough to be useful for working memory tasks," added Miller.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>