Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Chinese remedy shows potential in preventing breast cancer

21.12.2005


A derivative of the sweet wormwood plant used since ancient times to fight malaria and shown to precisely target and kill cancer cells may someday aid in stopping breast cancer before it gets a toehold. In a new study, two University of Washington bioengineers found that the substance, artemisinin, appeared to prevent the onset of breast cancer in rats that had been given a cancer-causing agent. The study appears in the latest issue of the journal Cancer Letters.

"Based on earlier studies, artemisinin is selectively toxic to cancer cells and is effective orally," according to Henry Lai, research professor in the Department of Bioengineering, who conducted the study with fellow UW bioengineer Narendra P. Singh, a research associate professor in the department. "With the results of this study, it’s an attractive candidate for cancer prevention."

The properties that make artemisinin an effective antimalarial agent also appear responsible for its anti-cancer clout. When artemisinin comes into contact with iron, a chemical reaction ensues that spawns free radicals – highly reactive chemicals that, when formed inside a cell, attack the cell membrane and other structures, killing the cell. The malaria parasite can’t eliminate iron in the blood cells it eats, and stores it. Artemisinin makes that stored iron toxic to the parasite.



The same appears to be true for cancer. Because they multiply so rapidly, most cancer cells have a high rate of iron uptake. Their surfaces have large numbers of receptors, which transport iron into the cells. That appears to allow the artemisinin to selectively target and kill the cancer cells, based on their higher iron content. In the latest study, the researchers administered to rats a single oral dose of 7,12-dimethylbenz[a]anthracene, a substance known to induce multiple breast tumors. Half of the rats then were fed regular food, while the other half were fed food with 0.02 percent artemisinin added. For 40 weeks, researchers monitored each group for the formation of breast tumors.

Among the rats that didn’t get artemisinin, 96 percent developed tumors. In comparison, 57 percent of the artemisinin-fed rats developed tumors.

In addition, the researchers report, tumors that did develop in the artemisinin-fed rats were both "significantly fewer and smaller in size when compared with controls."

The reason for artemisinin’s apparent preventative effect may be twofold, the researchers said. The substance may kill precancerous cells, which also tend to use more iron than ordinary cells, before those cells develop into a tumor.

Artemisinin also may impede angiogenesis, or a tumor’s ability to grow networks of blood vessels that allow it to enlarge. Because artemisinin is widely used in Asia and Africa as an anti-malarial, it has a track record of being relatively safe and causing no known side effects, Lai said. "The present data indicate that it may be a potent cancer-chemoprevention agent.

"Additional studies are needed to investigate whether the breast cancer prevention property of artemisinin can be generalized to other types of cancer."

Rob Harrill | EurekAlert!
Further information:
http://www.washington.edu
http://www.intl.elsevierhealth.com/journals/cale/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>