Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pular antidepressants boost brain growth, Hopkins scientists report


Discovery in rodents may explain why some antidepressants require weeks of use before they work

The beneficial effects of a widely used class of antidepressants might be the result of increased nerve-fiber growth in key parts of the brain, according to a Johns Hopkins study being published in the January 2006 issue of the Journal of Neurochemistry.

The study on rats, led by Vassilis E. Koliatsos, M.D., a neuropathologist at the Johns Hopkins University School of Medicine, found that selective serotonin reuptake inhibitors (SSRIs) increase the density of nerve-impulse-carrying axons in the frontal and parietal lobes of the neocortex and part of the limbic brain which control the sense of smell, emotions, motivation, and organs that work reflexively such as the heart, intestines and stomach. "It appears that SSRI antidepressants rewire areas of the brain that are important for thinking and feeling, as well as operating the autonomic nervous system," said Koliatsos.

Axons are long, filament-shaped extensions of neurons that, together with myelin, are the main constituents of nerves. Axons conduct chemically driven nerve impulses away from the cell body toward a narrow gap known as a synapse. Among the chemicals involved are such monoamines as norepinephrine and serotonin, which, at the synapse, are transferred to another neuron.

Antidepressants, such as Prozac, Zoloft and Paxil, have long been thought to exert their clinical effects by increasing synaptic concentrations of serotonin and norepinephrine, enhancing or stimulating their transference.

"But our findings -- that serotonin reuptake modulators increase the density of nerve synapses, especially in the front part of the brain - may offer a better explanation of why antidepressants are effective and why they take time to work," according to Koliatsos.

For example, antidepressants increase synaptic monoamines within hours, and the regulatory effects on receptors are complete within a few days, yet clinically meaningful results from antidepressants usually require a two- to four-week delay.

"This disparity between simple pharmacological effects and clinical experience might be due to the time it takes for serotonin axons to grow," Koliatsos said.

"For the patient, this hypothesis provides more tangible evidence of a real effect in the brain," he added.

In the Hopkins study, Koliatsos and his team gave either the selective serotonin reuptake inhibitor fluoxetine (Prozac), the selective serotonin reuptake enhancer tianeptine (a drug approved only for human use in France) or the selective norepineprine reuptake inhibitor desipramine, a so-called tricyclic antidepressant, to groups of rats for four weeks and studied anatomical patterns of serotonin stimulation on various parts of the brain. The results showed that fluoxetine and tianeptine, but not desipramine, increased the density of serotonin axons in the frontal and parietal neocortex and certain limbic cortical and subcortical areas.

One possible explanation for this action is the brain-derived growth factor (BDNF). BDNF is regulated by levels of serotonin and is known to be a prime candidate for causing serotonin axon growth, Koliatsos said.

In general, the relationships between brain serotonin concentrations and BDNF expression are very complex, but previous studies have suggested that both higher (such as caused by serotonin reuptake inhibitors) and lower (such as effected by tianeptine) concentrations of free serotonin might induce BDNF expression in such brain regions as the frontal and parietal cortex.

The researchers caution that since a previous study failed to show a correlation between tianeptine treatment and BDNF levels, further investigation of the complex regulations of BDNF by antidepressants is needed.

Eric Vohr | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>