Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whooping cough persistence traced to key toxin

20.12.2005


A key toxin associated with whooping cough helps the germs resist the human immune system and infect vaccinated populations. Discovery of this resistance mechanism could lead to potential new treatments for the disease, according to researchers at Penn State.



Whooping cough, or pertussis, is a highly contagious respiratory disease caused by the germ Bordetella pertussis. Whooping cough can occur at any age but is generally considered a childhood disease marked by severe spells of coughing and a characteristic whooping sound while inhaling. Though the widespread use of vaccines has helped reduce disease drastically, recent surveys reveal that the disease is increasingly being diagnosed in a large number of vaccinated adults, posing a serious health risk to unvaccinated children and infants.

"One of the great mysteries of pertussis is how it persists within populations despite high vaccination rates," says Eric Harvill, assistant professor of microbiology and infectious disease in the College of Agricultural Sciences.


Tests on infected mice show that serum antibodies are usually able to clear the germ from the lungs by recruiting large numbers of neutrophils, a type of white blood cells that kill germ cells, by surrounding and absorbing them. But while the technique is successful against B. bronchiseptica – a closely related germ that causes kennel cough in dogs – within a day, it takes longer to clear B. pertussis.

Antibodies produced by the vaccines are effective only seven days after they are administered, says Harvill, who is part of Penn State’s Center for Infectious Disease Dynamics. "The bacterium appears to have a mechanism to resist the effects of antibodies during the first week of infection," he adds.

Harvill’s group theorized that one or more genes specific to pertussis were somehow delaying the effectiveness of the vaccine. They looked specifically at the genes encoding Pertussis toxin, PTx, and hypothesized that this toxin somehow interfered with antibody-mediated bacterial clearance.

To test their theory that those pertussis germs without the toxin would be more susceptible to antibodies, Harvill and his colleagues inoculated one set of mice with genetically engineered B. pertussis that lacked the toxin, and another set with the naturally occurring strain. Both strains grew well in these mice, but when antibodies that recognize B. pertussis were given to each group they rapidly eliminated only the strain lacking the toxin.

Further tests suggest that the toxin acts directly on white blood cells to temporarily prevent their movement across tissues that line various organs.

"This is a particular strategy by B. pertussis," says Harvill, whose findings are published in the current (December) issue of Journal of Clinical Investigation.

The Penn State researcher says the mechanism for preventing the migration of white blood cells is a key adaptation by B. pertussis to prolong the infection period in immune and vaccinated hosts.

"B. pertussis effectively avoids the immune system during the first week of infection, giving it enough time to successfully grow, and potentially spread to more people," explains Harvill.

Acute infections are like forest fires, says Ottar Bjornstad, associate professor of entomology and biology at Penn State and a co-author of the study. He notes, "And while highly infectious pathogens will spread rapidly, they may burn through the susceptible population so quickly that they run the risk of extinction."

"Pertussis cleverly avoids this by using a toxin to allow re-infecting of those who have been vaccinated or infected earlier," adds Bjornstad, also co-director of the Center for Infectious Disease Dynamics.

According to Harvill, the new understanding could lead to potential new treatments for whooping cough.

"The most direct treatment could involve inactivating the toxin, or simply having vaccines that produce more antibodies specific to the toxin," notes the Penn State researcher.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>