Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Whooping cough persistence traced to key toxin


A key toxin associated with whooping cough helps the germs resist the human immune system and infect vaccinated populations. Discovery of this resistance mechanism could lead to potential new treatments for the disease, according to researchers at Penn State.

Whooping cough, or pertussis, is a highly contagious respiratory disease caused by the germ Bordetella pertussis. Whooping cough can occur at any age but is generally considered a childhood disease marked by severe spells of coughing and a characteristic whooping sound while inhaling. Though the widespread use of vaccines has helped reduce disease drastically, recent surveys reveal that the disease is increasingly being diagnosed in a large number of vaccinated adults, posing a serious health risk to unvaccinated children and infants.

"One of the great mysteries of pertussis is how it persists within populations despite high vaccination rates," says Eric Harvill, assistant professor of microbiology and infectious disease in the College of Agricultural Sciences.

Tests on infected mice show that serum antibodies are usually able to clear the germ from the lungs by recruiting large numbers of neutrophils, a type of white blood cells that kill germ cells, by surrounding and absorbing them. But while the technique is successful against B. bronchiseptica – a closely related germ that causes kennel cough in dogs – within a day, it takes longer to clear B. pertussis.

Antibodies produced by the vaccines are effective only seven days after they are administered, says Harvill, who is part of Penn State’s Center for Infectious Disease Dynamics. "The bacterium appears to have a mechanism to resist the effects of antibodies during the first week of infection," he adds.

Harvill’s group theorized that one or more genes specific to pertussis were somehow delaying the effectiveness of the vaccine. They looked specifically at the genes encoding Pertussis toxin, PTx, and hypothesized that this toxin somehow interfered with antibody-mediated bacterial clearance.

To test their theory that those pertussis germs without the toxin would be more susceptible to antibodies, Harvill and his colleagues inoculated one set of mice with genetically engineered B. pertussis that lacked the toxin, and another set with the naturally occurring strain. Both strains grew well in these mice, but when antibodies that recognize B. pertussis were given to each group they rapidly eliminated only the strain lacking the toxin.

Further tests suggest that the toxin acts directly on white blood cells to temporarily prevent their movement across tissues that line various organs.

"This is a particular strategy by B. pertussis," says Harvill, whose findings are published in the current (December) issue of Journal of Clinical Investigation.

The Penn State researcher says the mechanism for preventing the migration of white blood cells is a key adaptation by B. pertussis to prolong the infection period in immune and vaccinated hosts.

"B. pertussis effectively avoids the immune system during the first week of infection, giving it enough time to successfully grow, and potentially spread to more people," explains Harvill.

Acute infections are like forest fires, says Ottar Bjornstad, associate professor of entomology and biology at Penn State and a co-author of the study. He notes, "And while highly infectious pathogens will spread rapidly, they may burn through the susceptible population so quickly that they run the risk of extinction."

"Pertussis cleverly avoids this by using a toxin to allow re-infecting of those who have been vaccinated or infected earlier," adds Bjornstad, also co-director of the Center for Infectious Disease Dynamics.

According to Harvill, the new understanding could lead to potential new treatments for whooping cough.

"The most direct treatment could involve inactivating the toxin, or simply having vaccines that produce more antibodies specific to the toxin," notes the Penn State researcher.

Amitabh Avasthi | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>