Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whooping cough persistence traced to key toxin

20.12.2005


A key toxin associated with whooping cough helps the germs resist the human immune system and infect vaccinated populations. Discovery of this resistance mechanism could lead to potential new treatments for the disease, according to researchers at Penn State.



Whooping cough, or pertussis, is a highly contagious respiratory disease caused by the germ Bordetella pertussis. Whooping cough can occur at any age but is generally considered a childhood disease marked by severe spells of coughing and a characteristic whooping sound while inhaling. Though the widespread use of vaccines has helped reduce disease drastically, recent surveys reveal that the disease is increasingly being diagnosed in a large number of vaccinated adults, posing a serious health risk to unvaccinated children and infants.

"One of the great mysteries of pertussis is how it persists within populations despite high vaccination rates," says Eric Harvill, assistant professor of microbiology and infectious disease in the College of Agricultural Sciences.


Tests on infected mice show that serum antibodies are usually able to clear the germ from the lungs by recruiting large numbers of neutrophils, a type of white blood cells that kill germ cells, by surrounding and absorbing them. But while the technique is successful against B. bronchiseptica – a closely related germ that causes kennel cough in dogs – within a day, it takes longer to clear B. pertussis.

Antibodies produced by the vaccines are effective only seven days after they are administered, says Harvill, who is part of Penn State’s Center for Infectious Disease Dynamics. "The bacterium appears to have a mechanism to resist the effects of antibodies during the first week of infection," he adds.

Harvill’s group theorized that one or more genes specific to pertussis were somehow delaying the effectiveness of the vaccine. They looked specifically at the genes encoding Pertussis toxin, PTx, and hypothesized that this toxin somehow interfered with antibody-mediated bacterial clearance.

To test their theory that those pertussis germs without the toxin would be more susceptible to antibodies, Harvill and his colleagues inoculated one set of mice with genetically engineered B. pertussis that lacked the toxin, and another set with the naturally occurring strain. Both strains grew well in these mice, but when antibodies that recognize B. pertussis were given to each group they rapidly eliminated only the strain lacking the toxin.

Further tests suggest that the toxin acts directly on white blood cells to temporarily prevent their movement across tissues that line various organs.

"This is a particular strategy by B. pertussis," says Harvill, whose findings are published in the current (December) issue of Journal of Clinical Investigation.

The Penn State researcher says the mechanism for preventing the migration of white blood cells is a key adaptation by B. pertussis to prolong the infection period in immune and vaccinated hosts.

"B. pertussis effectively avoids the immune system during the first week of infection, giving it enough time to successfully grow, and potentially spread to more people," explains Harvill.

Acute infections are like forest fires, says Ottar Bjornstad, associate professor of entomology and biology at Penn State and a co-author of the study. He notes, "And while highly infectious pathogens will spread rapidly, they may burn through the susceptible population so quickly that they run the risk of extinction."

"Pertussis cleverly avoids this by using a toxin to allow re-infecting of those who have been vaccinated or infected earlier," adds Bjornstad, also co-director of the Center for Infectious Disease Dynamics.

According to Harvill, the new understanding could lead to potential new treatments for whooping cough.

"The most direct treatment could involve inactivating the toxin, or simply having vaccines that produce more antibodies specific to the toxin," notes the Penn State researcher.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>