Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new weapon against tuberculosis?

20.12.2005


Tuberculosis is an extremely insidious disease. The pathogen Mycobacterium tuberculosis can rest undetected many years in the human body, and infected people show no symptoms – until the disease suddenly breaks out. Worldwide, the number of deaths related to tuberculosis amounts to 2 million per year, eight million new infections occur annually. Dangerous centers of infection are, for instance, third-world countries or prisons in countries of the former Soviet Union. In some of the prisons, one hundred percent of the inmates carry the pathogen. Another serious problem is the increasing resistance of tuberculosis-pathogens against antibiotics.



Therefore, next to prevention in the affected countries, the search for new active agents against Mycobacterium tuberculosis has top priority. Funded by the German Ministry of Science and Education, a systematic search for such substances has begun. In the course of this project, scientists around Jens Peter von Kries at the so-called Screening Unit of the Berlin-based Forschungsinstitut für Molekulare Pharmakologie (FMP) made a surprising discovery: They identified a promising agent that inhibits the growth of tuberculosis bacteria. First tests at the cooperating Max Planck Institute for Infection Biology in Berlin showed the effectiveness of the substance in living tissue. "The substance that we discovered attacks the pathogens within their host cells", says Dr. von Kries. These host cells are part of the human immune system and form the first wall of defense agains the disease. In those so-called macrophages the tuberculosis pathogens remain undetected and grow, at the same time blocking an effective response of the immune system.

Currently, the scientists are filing a patent. Thus, Jens Peter von Kries does not want to disclose further details. He only says: "Our substance has already been clinically tested for other purposes. What’s new is the fact that it inhibits the growth of Mycobacterium tuberkulosis." The scientist adds: "Many people encounter the substance in their every-day life."


But how did the researchers came across this substance? To explain that, the head of the Screening Unit expands on the topic. "Screening with high-throughput methods is common practice for the pharmaceutical industry", says Dr. von Kries. Automated detection systems are screening thousands of substances, always looking for a clue to a well defined question. That may concern a certain pathway in molecular reactions which is already known. Using multiple procedures, researchers can find out whether there are other substances that cause similar reactions. "In academic research this procedure is a novelty", says von Kries. He established, together with colleagues from other institutes, the Screening Unit at the FMP, and the laboratory is involved in the search for active agents against tuberculosis pathogens funded by the German Ministry of Science and Education. The project is coordinated by Dr. Matthias Wilmanns (European Molecular Biology Laboratory in Hamburg)

One way to investigate such agents is called absorption spektroscopy. This method allows researchers to compare certain spectral lines of active substances that are well known to spectra of other substances. Spectral lines emerge when light of a defined wave length hits a sample and is then detected by a special camera. "If we find similar patterns we start to look more closely at the samples", says von Kries. Using this method, he obtained sixteen or seventeen hits out of 20,000 samples. "I selected four of those hits and gave the substances to our partners at Max Planck Institute for Infection Biology", says von Kries. One of the samples was actually effective against tuberculosis bacteria. Jens Peter of Kries: "That was quite unexpected, it was like winning the lottery."

The systematic search had concentrated entirely on a certain basic mechanism in cells. "This mechanism is part of the signal transduction from the outside into the cell and further into the nucleus", explains von Kries. In signal transduction, encymes play an important role. There are known substances that interfere with this chemical pathway and stop signal transduction. The team of the Screening Unit at FMP used two of these substances as reference material and compared the spectra to other materials via absorption spectroscopy.

"In our next screenings we will continue to take a closer look at signal transduction", says von Kries. For this, the Screening Unit is supported by Caliper Life Sciences of Rüsselsheim, Germany. The company supported the FMP with brand-new equipment. The automated screening machine can examine up to 30,000 samples per day using modern lab-on-a-chip technology. The robot offers several advantages. One is the high throughput, a second one is the fact that "the robot of Caliper examines enzymes on a substrate which closely matches the natural environment of the cell", says Jens Peter von Kries. He adds: "Thus, the results will be more accurate than with other screening methods." The researchers at the Screening Unit hope to identify even weak substances that show only small effects. Such potential agents would remain undetected in conventional screening procedures. By identifying such substances, whole new classes of active agents could be discovered and possibly be of use for producing new medicaments with, for instance, less side effects.

Core of the Caliper Screening-robot is a chip made of quartz, roughly the size of a hand, with twelve tiny reaction canals (see also press release from May 6, 2005 (in German): www.fv-berlin.de/pm_archiv/2005/19-wirkstoffe.htm ). Just recently, the final adjustments in the FMP laboratory were made so that the Screening-robot can start its work. With this machine, FMP will be the first scientific institute worldwide that makes use of such a modern Lab-on-a-Chip technology. "Of course I hope to produce further hits with the new equipment", says von Kries, "however, I doubt that we will win the lottery each week."

Dr. Björn Maul | alfa
Further information:
http://www.fmp-berlin.de

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>