Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence links cocaine abuse and Parkinson’s disease

14.12.2005


Laboratory studies show that cocaine causes changes in brain that increase vulnerability to environmental toxins in both adults and in offspring who were exposed to cocaine before birth, according to St. Jude



Adults who abuse cocaine might increase their risk of developing Parkinson’s disease (PD), and pregnant women who abuse cocaine could increase the risk of their children developing PD later in life, according to results of laboratory studies performed by investigators at St. Jude Children’s Research Hospital.

The study’s findings are important because there are currently more than 2 million cocaine abusers in the US today, the researchers said. Many individuals who abused the drug during the height of the cocaine abuse epidemic of the 1970s and 1980s are now entering their older years, when symptoms of PD are likely to emerge.


A report on this work appears in the online, prepublication edition of Neuroscience.

The St. Jude team showed in laboratory models of both the adult and fetal brains that exposure to cocaine alters the nerve bodies in the region of the brain called the substantia nigra. This damage made the neurons more susceptible to MPTP, a toxin known to cause symptoms of PD.

The nigrostriatal system is a pathway of nerves that originates in the area called the substantial nigra pars compacta (SNpc) and spreads out into certain other parts of the brain. The neurons in the SNpc make the neurotransmitter dopamine, and degeneration of this area and the nigrostriatal system is one of the major hallmarks of PD, according to Richard Smeyne, Ph.D., an associate member of the St. Jude Department of Developmental Neurobiology.

"Our findings suggest that cocaine makes the SNpc in adults susceptible to further damage from environmental toxins that can cause Parkinson’s disease," Smeyne said "The findings also strongly suggest that women who abuse cocaine during pregnancies put their children at an increased risk for developing Parkinson’s disease."

Cocaine is also known to disrupt the normal function of the dopamine transporter, a protein that sweeps up dopamine from the synapse after it stimulates its target nerve, he added. Disruption of this process causes an abnormal rise in the concentration of dopamine in the synapse. This poses a threat to the brain because dopamine can interact with other chemicals to become a free radical--a highly reactive molecule that can damage tissue. "So the increase in the amount of dopamine in the synapse can lead to high levels of destructive free radicals that damage this area of the brain," Smeyne said.

The St. Jude team studied the effect of cocaine in laboratory models that are resistant to a toxin called MPTP, which is known to cause PD-like damage in the brain. The investigators used this model to determine if cocaine altered the nigrostriatal system so it became sensitive to MPTP.

Exposure to cocaine did not affect the number of cells in the SNpc of adult and fetal models but did make them more susceptible to damage from MPTP, the researchers reported. Furthermore, in both the adult and fetal models, cocaine exposure disrupted the balance between the proteins that sweep up dopamine from the synapses and bring them into the pre-synaptic cell and the sacs that sequester (package) them in those neurons. Specifically, the ratio of transporter proteins to the sacs increased by 27 percent in the fetal models and by 28 percent in adult models, the investigators reported.

"This means that the transporter proteins were pumping more dopamine back into the pre-synaptic nerves than could be repackaged in those sacs," Smeyne explained. "And that was allowing dopamine to accumulate freely inside the cell, where it can produce free radicals. That kind of stress can make the nerve susceptible to other environmental toxins. Smeyne theorizes that toxins that enter the body could then cause damage in the substantia nigra that leads to Parkinson’s disease.

The study also found that cocaine exposure decreased the number of certain dopamine receptors called D2 autoreceptors. These autoreceptors control the production and/or release of dopamine; when they are in short supply, the level of dopamine in the synapse rises. This in turn leaves the synapse (connection between nerves) vulnerable to free radical damage, according to Smeyne.

"Based on these findings it might not be surprising to see a rise in the number of cases of Parkinson’s disease in the next 10 or 20 years or so," said Steven A. Lloyd, Ph.D. the first author of the article. Lloyd was a graduate student in Smeyne’s laboratory during this work and is now an assistant professor of psychology at Rhodes College in Memphis.

Smeyne’s team previously published their findings that exercise confers protection on mice that otherwise would have developed PD following treatment with MPTP; and that the rise in the level of GDNF appeared to be key to that protection. The article appeared in the special October 2004 issue of Molecular Brain Research called "Molecular Aspects of Parkinson’s Disease."

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>