Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence links cocaine abuse and Parkinson’s disease

14.12.2005


Laboratory studies show that cocaine causes changes in brain that increase vulnerability to environmental toxins in both adults and in offspring who were exposed to cocaine before birth, according to St. Jude



Adults who abuse cocaine might increase their risk of developing Parkinson’s disease (PD), and pregnant women who abuse cocaine could increase the risk of their children developing PD later in life, according to results of laboratory studies performed by investigators at St. Jude Children’s Research Hospital.

The study’s findings are important because there are currently more than 2 million cocaine abusers in the US today, the researchers said. Many individuals who abused the drug during the height of the cocaine abuse epidemic of the 1970s and 1980s are now entering their older years, when symptoms of PD are likely to emerge.


A report on this work appears in the online, prepublication edition of Neuroscience.

The St. Jude team showed in laboratory models of both the adult and fetal brains that exposure to cocaine alters the nerve bodies in the region of the brain called the substantia nigra. This damage made the neurons more susceptible to MPTP, a toxin known to cause symptoms of PD.

The nigrostriatal system is a pathway of nerves that originates in the area called the substantial nigra pars compacta (SNpc) and spreads out into certain other parts of the brain. The neurons in the SNpc make the neurotransmitter dopamine, and degeneration of this area and the nigrostriatal system is one of the major hallmarks of PD, according to Richard Smeyne, Ph.D., an associate member of the St. Jude Department of Developmental Neurobiology.

"Our findings suggest that cocaine makes the SNpc in adults susceptible to further damage from environmental toxins that can cause Parkinson’s disease," Smeyne said "The findings also strongly suggest that women who abuse cocaine during pregnancies put their children at an increased risk for developing Parkinson’s disease."

Cocaine is also known to disrupt the normal function of the dopamine transporter, a protein that sweeps up dopamine from the synapse after it stimulates its target nerve, he added. Disruption of this process causes an abnormal rise in the concentration of dopamine in the synapse. This poses a threat to the brain because dopamine can interact with other chemicals to become a free radical--a highly reactive molecule that can damage tissue. "So the increase in the amount of dopamine in the synapse can lead to high levels of destructive free radicals that damage this area of the brain," Smeyne said.

The St. Jude team studied the effect of cocaine in laboratory models that are resistant to a toxin called MPTP, which is known to cause PD-like damage in the brain. The investigators used this model to determine if cocaine altered the nigrostriatal system so it became sensitive to MPTP.

Exposure to cocaine did not affect the number of cells in the SNpc of adult and fetal models but did make them more susceptible to damage from MPTP, the researchers reported. Furthermore, in both the adult and fetal models, cocaine exposure disrupted the balance between the proteins that sweep up dopamine from the synapses and bring them into the pre-synaptic cell and the sacs that sequester (package) them in those neurons. Specifically, the ratio of transporter proteins to the sacs increased by 27 percent in the fetal models and by 28 percent in adult models, the investigators reported.

"This means that the transporter proteins were pumping more dopamine back into the pre-synaptic nerves than could be repackaged in those sacs," Smeyne explained. "And that was allowing dopamine to accumulate freely inside the cell, where it can produce free radicals. That kind of stress can make the nerve susceptible to other environmental toxins. Smeyne theorizes that toxins that enter the body could then cause damage in the substantia nigra that leads to Parkinson’s disease.

The study also found that cocaine exposure decreased the number of certain dopamine receptors called D2 autoreceptors. These autoreceptors control the production and/or release of dopamine; when they are in short supply, the level of dopamine in the synapse rises. This in turn leaves the synapse (connection between nerves) vulnerable to free radical damage, according to Smeyne.

"Based on these findings it might not be surprising to see a rise in the number of cases of Parkinson’s disease in the next 10 or 20 years or so," said Steven A. Lloyd, Ph.D. the first author of the article. Lloyd was a graduate student in Smeyne’s laboratory during this work and is now an assistant professor of psychology at Rhodes College in Memphis.

Smeyne’s team previously published their findings that exercise confers protection on mice that otherwise would have developed PD following treatment with MPTP; and that the rise in the level of GDNF appeared to be key to that protection. The article appeared in the special October 2004 issue of Molecular Brain Research called "Molecular Aspects of Parkinson’s Disease."

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>