Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding how water channels- aquaporins - open and close may lead to new drugs

13.12.2005


Living organisms are dependent on being able to adjust the water content in their cells. This is achieved by regulating the flow of water through the cell membrane. Water is ‘turned on’ and ‘turned off’ by membrane proteins that function as water conduits and are called aquaporins. In the new issue of Nature, Professor Per Kjellbom and Associate Professor Urban Johanson, plant biochemists at Lund University, Sweden, describe how this takes place. The discovery is not only a breakthrough for pure science. It may also pave the way for a new type of drug and for new cosmetic products.



Peter Agre discovered the first aquaporin in 1992 in red blood cells and was awarded the 2003 Nobel Prize. Since then, 13 variants of aquaporin have been found in animals and humans and 35 in plants. There are thousands of these aquaporins in every cell membrane. Aquaporins contain a conduit that is so tiny that only a single water molecule at a time can pass through it. But this traffic can be lively indeed. In one second, several billion water molecules can get through. The direction of this water flow is contingent on the osmotic pressure. The water moves in a direction away from a low and toward a high concentration of salt and nutritional substances. But the conduit isn’t always open. The Lund scientists have found out how it opens and closes. This was done in collaboration with a team at Chalmers University of Technology in Göteborg, Sweden, under the direction of Richard Neutze, and with Emad Tajkhorshid at the University of Illinois.

“We have used yeast fungi to produce aquaporins,” says Per Kjellbom. With our method we can produce sufficient amounts of pure aquaporins to obtain the crystals needed for our analyses. It turns out that with the technology we used to crystallize aquaporins they were in the closed position. Previously it had only been possible to produce open aquaporins. This gave us an opportunity to compare open and closed aquaporins and to understand how this opening and closing works at the molecular level.


Even though there are different variants of aquaporin, they are all similar and work in largely the same way. They exist in every living organism, from bacteria to plants, animals, and humans and haven’t changed much in their evolution. The use of the regulatory mechanism has been patented. A newly established company is going to design new drugs and produce plants that are resistant to drought. Per Kjellbom gives a few examples:

“The kidneys are responsible for maintaining a water balance in the body. If we can identify a chemical compound that can close the aquaporins in the kidneys, this can be developed into a diuretic drug. By the same token, compounds that stabilize the closed structure could be used in cancer treatment. Open aquaporins are necessary for cells to be able to move and form new blood vessels, which tumors are very dependent on to grow. By closing these aquaporins, tumor growth and metastases could be inhibited. There are also a number of genetically inherited diseases that disturb the water balance in the body. The moisture balance in the skin is dependent on aquaporins, a fact that is used both in drugs and cosmetic products. These include antiperspirants and moisture-conserving skin creams to counteract aging.”

Göran Frankel | alfa
Further information:
http://www.lu.se

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>