Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AMN107 has potent activity in leukemia resistant to Gleevec

12.12.2005


The targeted agent AMN107 can produce dramatic benefits in patients with some forms of leukemia that are resistant to Gleevec, the standard therapy for these cancers, say researchers at The University of Texas M. D. Anderson Cancer Center (meeting abstract #37).



At the 47th Annual Meeting of the American Society of Hematology (ASH), the investigators reported marked improvement in outcome in all three phases of chronic myeloid leukemia (CML) as well as benefit in treating a form of acute lymphocytic leukemia (ALL) that shares the same genetic abnormality as CML, the Philadelphia chromosome.

"This drug is very promising and appears at this point to offer an effective option for patients who do not achieve an optimal response to Gleevec therapy," says Hagop Kantarjian, M.D., professor and chair of the Department of Leukemia.


If additional studies continue to show such results, Kantarjian says, he believes AMN107, which is taken in pill form, "will either replace Gleevec as the standard of care in the future or will be used in combination with it."

Both CML and Philadelphia-positive ALL is caused by the swapping of genetic material in bone marrow stem cells between two chromosomes, which produces an abnormality called the Philadelphia chromosome. This new gene then produces a novel tyrosine kinase (Bcr-Abl) that signals the abnormal cell growth that leads to development of leukemia.

While both Gleevec and AMN107 shut down the activity of Bcr-Abl, laboratory experiments with AMN107 show it is up to 50 times more potent because it binds more efficiently to the enzyme than does Gleevec.

In the phase I clinical trial being reported, 119 patients who were resistant to Gleevec were given AMN107, and in some cases the dose was increased up to twelve fold. The researchers found that the range of response varied, depending on the form of the cancer and the presence of genetic mutations. For example, hematologic response from the drug (defined as control of white blood cell counts) ranged from 44 percent to 100 percent in different subgroups of CML patients, and the more enduring cytogenetic response (elimination of cells with the cancer-causing defect) ranged from 22 percent to 100 percent. There was less overall response in ALL patients (ranging from 10 percent to 33 percent, depending on extent of disease).

Kantarjian notes that while some patients fared better than others with AMN107, these patients had little or no other treatment options available.

He says the results suggest that physicians soon will be able to tailor leukemia therapy according to the molecular profile of the disease, offering different treatments for subsets of patients based on their cancer’s distinct molecular signature.

The collaborative study was led by M. D. Anderson and included the University of Frankfurt and Heidelberg University in Germany, the H. Lee Moffitt Cancer Center, Quest Diagnostics and Novartis Pharmaceuticals Corporation.

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>