Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advance in cholera bacteria points to new treatment and vaccine

09.12.2005


Opening a new door to an effective vaccine and therapy for a disease that strikes thousands annually, researchers at Dartmouth Medical School discovered that the bacteria that causes the intestinal disease Cholera spreads in the environment in much the same way it infects humans. Appearing in the December 8 issue of the journal Nature, the study investigates the bacterium Vibrio cholerae and its ability to attach to a host, enabling it to multiply and adding to the risk of infecting humans.



"We’ve discovered, through genetics, a factor that is important in the normal biology of the organism out in the environment and it is also one of the very initial factors for cholera colonization in the intestine," said Dr. Ronald Taylor, professor of microbiology and immunology at DMS who led the research. "Now that we know what the bacterium attaches to in the intestine, we can find ways to block that initial contact."

Cholera and the bacterium that causes it is found in contaminated drinking water and food, often in underdeveloped countries and refugee camps. Once the disease takes hold, it causes diarrhea, vomiting, severe dehydration and can result in death if treatment is not promptly given. In 2001 alone, 28 countries reported over 40 outbreaks of cholera to the World Health Organization, resulting in the deaths of thousands.


Large outbreaks are often traced back to contaminated water supplies that are commonly associated with algal or zooplankton blooms. For the V. cholerae bacterium to infect someone with cholera, the bacterium often binds to plankton in the aquatic environment before it arrives at the human intestine via contaminated food and water sources. V. cholerae attaches to the outer surface of plankton, made up of a carbonate substance called chitin. Once attached to the plankton’s chitin, the bacterium thrives on the carbon and multiplies. Humans do not have chitin in the surface of intestinal cells, where the bacterium takes hold, and researchers have been searching for another substance that could be responsible for playing a role in attachment.

In the study, Taylor and colleagues screened cultured intestinal cells and found mutant bacteria that had trouble binding to the intestinal cells. One mutant strain of V. cholerae lacks a gene that enables it to properly bind with a sugar called GlcNAc. When they compared it with normal, wild-type V. cholerae bacteria, the researchers found that the protein encoded by this gene provided normal bacteria the ability to attach to the GlcNAc on cells. The team verified that the GlcNAc in the intestine initiates the attachment and colonization of the bacteria by testing the mutant strain on zooplankton and cultured intestinal cells in vitro as well as in an in vivo cholera model.

"We set out to find factors that would reduce the bacteria’s ability to bind to the epithelial lining of the intestine," said Taylor. "What’s interesting is that we’ve identified a factor that works both in the environment and in the human body. This type of link hasn’t been discussed before and it has a strong potential for vaccine and therapeutic development."

These findings could lead to a new form of therapy to treat people with cholera. "Now that we know that the bacteria are binding this particular sugar, we could essentially trick the infecting bacteria to bind to the sugar included in a derivative of oral rehydration therapy solution instead of the intestine," said study co-author Brooke Jude, a fourth-year PhD student at Dartmouth Medical School.

A vaccine for cholera already exists, but only works 50% of the time and people who take it are only immune for 12 months, according to Taylor. Taylor believes that a more effective vaccine could be developed by inducing the production of antibodies directed against the protein his research team has discovered, thereby blocking its function. This would inhibit an early step in the intestinal colonization process, and the bacteria would pass harmlessly through the body. The authors acknowledge that in addition to GlcNAc, there may be other points of attachment that could still be responsible for allowing the bacteria to bind to the intestine, and they are currently focusing their research to identify any other areas of attachment..

"There may be more of these factors and as we find them and knock them out, we’ll decrease the ability for cholera bacteria to colonize even further," said Taylor.

Andrew Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>