Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trust-building hormone short-circuits fear in humans

09.12.2005


A brain chemical recently found to boost trust appears to work by reducing activity and weakening connections in fear-processing circuitry, a brain imaging study at the National Institutes of Health’s (NIH) National Institute of Mental Health (NIMH) has discovered. Scans of the hormone oxytocin’s effect on human brain function reveal that it quells the brain’s fear hub, the amygdala, and its brainstem relay stations in response to fearful stimuli. The work at NIMH and a collaborating site in Germany suggests new approaches to treating diseases thought to involve amygdala dysfunction and social fear, such as social phobia, autism, and possibly schizophrenia, report Andreas Meyer-Lindenberg, M.D., Ph.D., NIMH Genes Cognition and Psychosis Program, and colleagues, in the December 7, 2005 issue of the Journal of Neuroscience.


Functional magnetic resonance imaging data (red) superimposed on structural MRI scans. Frightful faces triggered a dramatic reduction in amygdala activity in subjects who had sniffed oxytocin, suggesting that oxytocin mediates social fear and trust via the amygdala and related circuitry. Source: NIMH Genes, Cognition and Psychosis Program.



"Studies in animals, pioneered by now NIMH director Dr. Thomas Insel, have shown that oxytocin plays a key role in complex emotional and social behaviors, such as attachment, social recognition and aggression," noted NIH Director Elias Zerhouni, M.D.. "Now, for the first time, we can literally see these same mechanisms at work in the human brain."

"The observed changes in the amygdala are exciting as they suggest that a long-acting analogue of oxytocin could have therapeutic value in disorders characterized by social avoidance," added Insel.


Inspired by Swiss scientists who last summer reported [1] that oxytocin increased trust in humans, Meyer-Lindenberg and colleagues quickly mounted a brain imaging study that would explore how this works at the level of brain circuitry. British researchers had earlier linked increased amygdala activity to decreased trustworthiness. [2] Having just discovered decreased amygdala activity in response to social stimuli in people with a rare genetic brain disorder that rendered them overly trusting of others, Meyer-Lindenberg hypothesized that oxytocin boosts trust by suppressing the amygdala and its fear-processing networks.

To test this idea, he asked 15 healthy men to sniff oxytocin or a placebo prior to undergoing a functional magnetic resonance imaging (fMRI) scan, which reveals what parts of the brain that are activated by particular activities. While in the scanner, the men performed tasks known to activate the amygdala – matching angry or fearful faces and threatening scenes.

As expected, the threatening pictures triggered strong activation of the amygdala during the placebo scan, but markedly less activity following oxytocin. The difference was especially pronounced in response to threatening faces, suggesting a pivotal role for oxytocin in regulating social fear. In addition, oxytocin dampened the amygdala’s communication with sites in the upper brainstem that telegraph the fear response. The results mirrored findings in rats [3], reported earlier this year by European scientists.

"Because increased amygdala activation has been associated with social fear in social phobia, genetic risk for anxiety and depression, and possibly with social fear in autism assessed during faces processing, this dual mode of action of oxytocin in humans suggests a potentially powerful treatment approach toward socially relevant fear," suggest the researchers.

People with autism characteristically avert their gaze from faces. A fMRI study [4] reported earlier this year by NIMH grantee Richard Davidson, Ph.D., University of Wisconsin, and colleagues, found over-activation of the amygdala in people with autism when they were looking at faces. Meyer-Lindenberg said future studies may test oxytocin as a treatment for such social anxiety symptoms in children with autism.

"Future research may also examine how oxytocin affects the amygdala in women, the mode of action of related hormones such as vasopressin, and how genetic variants in these hormones and their receptors affect brain function," he added.

Also participating in the research were: Peter Kirsch, Christin Esslinger, Daniela Mier, Stefanie Lis, Harald Gruppe, Bernd Gallhofer, Justus-Liebig University, Giessen, Germany; Qiang Chen, Sarina Siddhanti, Venkata Mattay, NIMH Genes Cognition and Psychosis Program.

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>