Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trust-building hormone short-circuits fear in humans

09.12.2005


A brain chemical recently found to boost trust appears to work by reducing activity and weakening connections in fear-processing circuitry, a brain imaging study at the National Institutes of Health’s (NIH) National Institute of Mental Health (NIMH) has discovered. Scans of the hormone oxytocin’s effect on human brain function reveal that it quells the brain’s fear hub, the amygdala, and its brainstem relay stations in response to fearful stimuli. The work at NIMH and a collaborating site in Germany suggests new approaches to treating diseases thought to involve amygdala dysfunction and social fear, such as social phobia, autism, and possibly schizophrenia, report Andreas Meyer-Lindenberg, M.D., Ph.D., NIMH Genes Cognition and Psychosis Program, and colleagues, in the December 7, 2005 issue of the Journal of Neuroscience.


Functional magnetic resonance imaging data (red) superimposed on structural MRI scans. Frightful faces triggered a dramatic reduction in amygdala activity in subjects who had sniffed oxytocin, suggesting that oxytocin mediates social fear and trust via the amygdala and related circuitry. Source: NIMH Genes, Cognition and Psychosis Program.



"Studies in animals, pioneered by now NIMH director Dr. Thomas Insel, have shown that oxytocin plays a key role in complex emotional and social behaviors, such as attachment, social recognition and aggression," noted NIH Director Elias Zerhouni, M.D.. "Now, for the first time, we can literally see these same mechanisms at work in the human brain."

"The observed changes in the amygdala are exciting as they suggest that a long-acting analogue of oxytocin could have therapeutic value in disorders characterized by social avoidance," added Insel.


Inspired by Swiss scientists who last summer reported [1] that oxytocin increased trust in humans, Meyer-Lindenberg and colleagues quickly mounted a brain imaging study that would explore how this works at the level of brain circuitry. British researchers had earlier linked increased amygdala activity to decreased trustworthiness. [2] Having just discovered decreased amygdala activity in response to social stimuli in people with a rare genetic brain disorder that rendered them overly trusting of others, Meyer-Lindenberg hypothesized that oxytocin boosts trust by suppressing the amygdala and its fear-processing networks.

To test this idea, he asked 15 healthy men to sniff oxytocin or a placebo prior to undergoing a functional magnetic resonance imaging (fMRI) scan, which reveals what parts of the brain that are activated by particular activities. While in the scanner, the men performed tasks known to activate the amygdala – matching angry or fearful faces and threatening scenes.

As expected, the threatening pictures triggered strong activation of the amygdala during the placebo scan, but markedly less activity following oxytocin. The difference was especially pronounced in response to threatening faces, suggesting a pivotal role for oxytocin in regulating social fear. In addition, oxytocin dampened the amygdala’s communication with sites in the upper brainstem that telegraph the fear response. The results mirrored findings in rats [3], reported earlier this year by European scientists.

"Because increased amygdala activation has been associated with social fear in social phobia, genetic risk for anxiety and depression, and possibly with social fear in autism assessed during faces processing, this dual mode of action of oxytocin in humans suggests a potentially powerful treatment approach toward socially relevant fear," suggest the researchers.

People with autism characteristically avert their gaze from faces. A fMRI study [4] reported earlier this year by NIMH grantee Richard Davidson, Ph.D., University of Wisconsin, and colleagues, found over-activation of the amygdala in people with autism when they were looking at faces. Meyer-Lindenberg said future studies may test oxytocin as a treatment for such social anxiety symptoms in children with autism.

"Future research may also examine how oxytocin affects the amygdala in women, the mode of action of related hormones such as vasopressin, and how genetic variants in these hormones and their receptors affect brain function," he added.

Also participating in the research were: Peter Kirsch, Christin Esslinger, Daniela Mier, Stefanie Lis, Harald Gruppe, Bernd Gallhofer, Justus-Liebig University, Giessen, Germany; Qiang Chen, Sarina Siddhanti, Venkata Mattay, NIMH Genes Cognition and Psychosis Program.

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>