Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundbreaking Research Into Deadly Diseases

09.12.2005


Pioneering research by a North East scientist could lead to a cure for some of the most deadly antibiotic-resistant diseases.

Toxic Shock, Septicemia and the flesh-eating disease necrotizing faciitis are just some of the potentially fatal invasive infections caused by the streptococcus bacterium, which has increased significantly over the past 10 years.

Until now, scientists have not understood what turns this ordinary bacterium – which is best known as the cause of sore throats - into something horrendous that can cause very invasive and potentially fatal diseases.



Now, Dr Gary Black, and a team from Northumbria University’s School of Applied Sciences, has isolated one of the main enzymes implicated in disease - known as a hyaluronidase, HylP1. In a process similar to the one used in DNA testing, pure enzymes were produced in large quantities, by isolating the gene and then inserting it into a safe micro-organism for production.

Once the genes were cloned, the enzyme it produces, HylP1, was crystallised and then taken to the University of York – one of only a few UK centres specialising in structural biology - where Dr Black worked with scientists to solve the shape of the enzyme. There, he discovered its rare triple-stranded beta-helix shape, which is similar to only four other enzymes out of the thousands tested in recent years. He says:

“Solving the three dimensional structure of the enzyme means we have a better understanding of how the enzymes bind to other matter and how they work. We need to understand how the enzyme works to understand how we can stop it”.

Dr Black’s findings are published this week in Proceedings of the National Academy of Sciences of the United States of America (PNAS), one of the world’s most cited multidisciplinary scientific serials. Set up in 1914, it publishes cutting-edge research and spans biological, physical and social sciences.

Dr Black now hopes one of the world’s leading pharmaceutical companies will take up his research and use his findings to develop revolutionary life saving drugs. He says: “This is a major breakthrough which has the potential to save thousands of lives in the future.”

Dr Black, 39, from County Durham, did a post-doctorate at Newcastle University and was a lecturer at Sunderland University before joining Northumbria University’s School of Applied Sciences five years ago.

He started this pioneering research when he joined Northumbria and has been assisted by PhD student Anna-Marie Lindsay and the now qualified Dr Nicola Smith.

Professor John Ditch, Deputy Vice Chancellor (Research and Consultancy) at Northumbria University recognised the importance of this ground-breaking research when he awarded Dr Black a Promising Research Fellowship grant last year.

He says: “This is a very exciting research project with the potential to save lives in the future. Dr Black and his team have shown immense dedication and have forged great links with the University of York to develop and refine the research findings. Dr Black has acted as Principal Supervisor to two PhD students during the research and the University is delighted to have been able to support such a major breakthrough, with an investment of £75,000 over five years.”

Ruth Laing | alfa
Further information:
http://www.pnas.org
http://www.northumbria.ac.uk

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>