Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundbreaking Research Into Deadly Diseases

09.12.2005


Pioneering research by a North East scientist could lead to a cure for some of the most deadly antibiotic-resistant diseases.

Toxic Shock, Septicemia and the flesh-eating disease necrotizing faciitis are just some of the potentially fatal invasive infections caused by the streptococcus bacterium, which has increased significantly over the past 10 years.

Until now, scientists have not understood what turns this ordinary bacterium – which is best known as the cause of sore throats - into something horrendous that can cause very invasive and potentially fatal diseases.



Now, Dr Gary Black, and a team from Northumbria University’s School of Applied Sciences, has isolated one of the main enzymes implicated in disease - known as a hyaluronidase, HylP1. In a process similar to the one used in DNA testing, pure enzymes were produced in large quantities, by isolating the gene and then inserting it into a safe micro-organism for production.

Once the genes were cloned, the enzyme it produces, HylP1, was crystallised and then taken to the University of York – one of only a few UK centres specialising in structural biology - where Dr Black worked with scientists to solve the shape of the enzyme. There, he discovered its rare triple-stranded beta-helix shape, which is similar to only four other enzymes out of the thousands tested in recent years. He says:

“Solving the three dimensional structure of the enzyme means we have a better understanding of how the enzymes bind to other matter and how they work. We need to understand how the enzyme works to understand how we can stop it”.

Dr Black’s findings are published this week in Proceedings of the National Academy of Sciences of the United States of America (PNAS), one of the world’s most cited multidisciplinary scientific serials. Set up in 1914, it publishes cutting-edge research and spans biological, physical and social sciences.

Dr Black now hopes one of the world’s leading pharmaceutical companies will take up his research and use his findings to develop revolutionary life saving drugs. He says: “This is a major breakthrough which has the potential to save thousands of lives in the future.”

Dr Black, 39, from County Durham, did a post-doctorate at Newcastle University and was a lecturer at Sunderland University before joining Northumbria University’s School of Applied Sciences five years ago.

He started this pioneering research when he joined Northumbria and has been assisted by PhD student Anna-Marie Lindsay and the now qualified Dr Nicola Smith.

Professor John Ditch, Deputy Vice Chancellor (Research and Consultancy) at Northumbria University recognised the importance of this ground-breaking research when he awarded Dr Black a Promising Research Fellowship grant last year.

He says: “This is a very exciting research project with the potential to save lives in the future. Dr Black and his team have shown immense dedication and have forged great links with the University of York to develop and refine the research findings. Dr Black has acted as Principal Supervisor to two PhD students during the research and the University is delighted to have been able to support such a major breakthrough, with an investment of £75,000 over five years.”

Ruth Laing | alfa
Further information:
http://www.pnas.org
http://www.northumbria.ac.uk

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>