Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists push forward understanding of multiple sclerosis

08.12.2005


New findings by a research team from the University of Edinburgh may help explain why diseases like multiple sclerosis (MS) which attack the myelin sheath – an insulator which protects the body’s nervous system - cause such severe symptoms in MS patients. Their discoveries may lead to new ways to help treat patients with MS, it is reported in the journal Neuron today (Thursday, 8 December).



The scientists have made an important breakthrough in understanding how animals with complex nervous systems, such as humans, achieve rapid signalling between their nerve cells. Communication between nerve cells and other organs such as muscles needs to be extremely fast, so that the body responds quickly to instructions from the brain. Electrical signals can travel rapidly from the brain because they ’jump’ down nerves using specialised hotspots called nodes.

Professor Peter Brophy of the Centre for Neuroscience Research at the Unversity and leader of the study explained: "It has been known for some time that the location of the nodes along nerves is determined by specialised cells called glia, which surround nerves with a myelin sheath. The nerves of babies are surrounded by these glial cells in the first few years after birth, which ensures proper development of the human nervous system. If nerves do not get their myelin sheath, or if they lose it later because of diseases like MS, the nodes either don’t form, or are disrupted, leading to a serious loss of nervous system function, which in turn can lead to blindness, paralysis or even death."


Professor Brophy’s team has discovered the key molecules- two proteins found in the gene Neurofascin- that link glial ensheathment of the nerve fibres to the formation of nodes. "We hope that the discovery of these proteins will help us to find ways to improve nerve conduction in patients with conditions where the myelin sheath is attacked," he said.

Linda Menzies | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>